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A translating homogeneous edge viewed through an aperture is an ambiguous stimulus, while a 
translating edge discontinuity is unambiguous. Under what conditions does the visual system use 
unambiguous velocity estimates to interpret ambiguous velocity estimates? We considered a translating 
rectangle visible through a set of stationary apertures. One aperture displayed a rectangle edge while 
the other apertures displayed corners. Observers reported the direction in which the edge appeared to 
translate. The results suggest that collinearity and terminator proximity determine whether the 
unambiguous corner velocity was used to interpret the ambiguous edge velocity. These results suggest 
some of the ways in which the visual system controls the integration of velocity estimates across image 
space. 

Motion Aperture problem Grouping Collinearity Proximity 

Local motion measurements are often ambiguous. For  
example, a moving edge viewed through a small aperture 
is physically ambiguous because the component of  
translation parallel to the edge's orientation cannot be 
measured. This so-called "aperture problem" has been 
widely investigated because all known visual systems 
contain spatially limited receptive fields (Wallach, 1935; 
Adelson & Movshon, 1982; Hildreth, 1984). How does 
the visual system determine object motion when initial 
velocity estimates may be ambiguous? Wallach (1935, 
1976) first suggested that unambiguous velocity estimates 
obtained from edge discontinuities are used by the visual 
system to overcome ambiguous velocity estimates.§ 
Because such feature or discontinuity based approaches 
are vulnerable to noise, subsequent linear models 
emphasized the information available from combinations 
of  ambiguous velocity estimates (Adelson & Movshon, 
1982; Mingolla, Todd & Norman, 1992). However, other 
studies have re-emphasized the importance of  unambigu- 
ous velocity estimates since observers have difficulty 
accurately combining ambiguous velocity estimates 
across spatially disconnected contours (Adelson & 
Movshon, 1983; Ramachandran, 1990) even when those 
contours define a single, rigid object (Shiffrar & Pavel, 

*Department of Neurobiology, Brain Research, The Weizmann 
Institute of Science, Rehovot 76100, Israel. 

tDepartment of Psychology and Center for Neuroscience, Rutgers 
University, 197 University Avenue, Newark, NJ 07102, U.S.A. 

,~To whom all correspondence should be addressed. 
§This paper limits itself to motion in the fronto-parallel plane. Thus, the 

terms 'ambiguous' and 'unambiguous' refer only to two-dimensional 
motion measurements. See Rubin, Solomon and Hochstein (1995) 
for discussion of the three-dimensional case. 

1991; Lorenceau & Shiffrar, 1992). Unambiguous 
velocity estimates influence the perceived direction of  a 
translating line when discontinuities are high contrast, 
shown at long duration, part of a relatively short line 
(Lorenceau, Shiffrar, Wells & Castet, 1993; Castet, 
Lorenceau, Shiffrar & Bonnet, 1993), and not a result of 
occlusion (Shimojo et al., 1989; Lorenceau & Shiffrar, 
1992). Discontinuities also influence the perception of 
plaid patterns (Derrington, Badcock & Henning, 1993). 

Do unambiguous velocity estimates from contour 
discontinuities influence the interpretation of ambiguous 
velocity estimates across disconnected spatial locations? 
When non overlapping, unambiguous and ambiguous 
motion signals are present in the same aperture, the 
unambiguous signals control the interpretation of the 
entire display (Rubin & Hochstein, 1993; Shiffrar, Li & 
Lorenceau, 1995). Over what spatial extent can the visual 
system use unambiguous velocity estimates to interpret 
ambiguous velocity estimates? Nakayama and Silverman 
(1988) addressed this question by examining when a dash 
influenced the interpretation of a translating curve. When 
the dash was positioned off of  the curve, it had only 
a minor effect on the perceived curve motion. Since 
accurate motion interpretations require both integration 
and segmentation, there may have been insufficient 
support for the coherent integration of the non-overlap- 
ping dash and curve stimuli (Braddick, 1993; Stoner & 
Albright, 1993). The purpose of the current experiments 
was to examine how the visual system interprets object 
motion under those conditions most conducive to motion 
integration across space. Since motion integration across 
contours is thought to be enhanced when contours define 
a rigid object (Ullman, 1979) and appear behind apertures 
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(Shimojo, Silverman & Nakayama, 1989; Lorenceau & 
Shiffrar, 1992; Trueswell & Hayhoe, 1993) we examined 
a rigidly translating polygon visible behind a set of 
stationary apertures. This stimulus, illustrated in Fig. 1, 
contained a spatially separated combination of ambigu- 
ous edge velocities and unambiguous corner velocities. 
We investigated the conditions under which the visual 
system used the corner motion to disambiguate the edge 
motion. 

EXPERIMENT 1: DEPTH AND PROXIMITY 

Research regarding the influence of  depth on motion 
integration across edges has focused primarily on the 
perception of  ambiguously translating line segments. Do 
depth cues also facilitate the integration of unambiguous 
velocity estimates across space? To test this idea we 
examined how different depth cues altered the influence 
of  unambiguously translating corners on the interpret- 
ation of an ambiguously translating edge. Disparity 
(Shimojo et al., 1989) and edge length variability 
(Lorenceau & Shiffrar, 1992; Kooi, 1993) were 
manipulated through aperture shape and the use of 
three-dimensional glasses. Since proximity is thought to 
facilitate perceptual grouping (Wertheimer, 1923; Kof- 
fka, 1935; Ben-Av & Sagi, 1995), manipulations of spatial 
proximity were used to measure the disambiguating 
power of translating contour discontinuities. 

Methods 

Subjects. Three subjects (one author and two naive) 
with normal or corrected-to-normal visual acuity 
participated in this experiment. These same observers 
served as subjects in all of  the subsequent experiments. 

Stimuli. The stimuli were displayed on a 19 in. RGB 
Hitachi monitor with a 60 Hz refresh rate. The monitor 
was controlled by a Silicon Graphics Personal Iris model 
4D/TG 30. This apparatus was used in all experiments. 

The display consisted of an obliquely oriented, rigidly 
translating rectangular outline viewed through five 

stationary apertures. The rectangle was oriented 45 deg 
clockwise or counterclockwise from the horizontal and 
translated vertically with a constant speed of 0.7 deg/sec. 
Four apertures were positioned so that each displayed a 
rectangle corner. The remaining aperture displayed one of 
the rectangle's straight edges. The center of this critical 
aperture was positioned over the midpoint of the 
rectangle's longest edge. A fixation point was placed at the 
center of the aperture display, as shown in Fig. 1. The 
distance between the fixation point and the center of the 
critical aperture was 0.5 degrees of visual angle (dva). The 
edge appeared randomly with equal probability at one of 
the four cardinal positions relative to the fixation point: 
above left, above right, below left or below right. The 
polygon translated vertically upward when the test edge 
was above the fixation point and translated vertically 
downward when the edge was below the fixation point. 
This manipulation fixed the direction of  the visible 
edge's translation so that edge eccentricity always 
increased. Rectangle width remained constant and equal 
to 1.6 dva. There were seven possible rectangle lengths: 
1.6, 2.0, 2.4, 2.8, 3.2, 3.6 and 4.0 dva. During each trial, 
aperture location was linked to rectangle size so that the 
corners and edges were always visible through and 
centered in the apertures. The rectangle outline was 
white with a luminance of 12.5 cd/m 2. The background 
was black while the apertures were cyan, 0.8 dva in 
diameter and had a luminance of 0.96 cd/m 2. This color 
and luminance difference between the apertures and 
rectangle created monocular depth cues in the form of 
T-junctions. 

Aperture shape and depth varied according to a within 
subjects design. Apertures were circular or square. The 
square apertures were oriented so that the visible edge's 
length remained constant. Visible edge length varied 
smoothly when viewed through a circular aperture. The 
second variable was relative aperture depth. Either the 
apertures were presented at the same zero disparity depth 
plane as the rectangle and were viewed monocularly or 
they were presented at 11 min arc uncrossed disparity and 
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FIGURE 1. Stimuli used in Expt 1. Rectangular outline figures translated behind circular or square (not shown) apertures so 
that four corners and one edge were visible. The distance between the edge and corners was varied. 
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were viewed binocularly with three-dimensional glasses. 
Thus there were four conditions: square apertures with 
zero disparity; square apertures with binocular disparity; 
circular apertures with zero disparity; circular apertures 
with binocular disparity. Each aperture shape/disparity 
condition was run as a separate block of  trials. 

Procedure. The experiments were performed in a dark 
environment. Viewing distance was fixed at 95 cm from 
the monitor with a chin rest. Subjects wore three-dimen- 
sional glasses (CrystalEyes Eyewear by Stereo Graphics 
Corp.) in the disparity conditions. Subjects were informed 
that sometimes the edge would appear to translate in 
the same direction as the corners while other times it 
would appear to translate independently. Subjects were 
asked to report the visible edge's direction of  translation 
while maintaining fixation. At the beginning of each trial 
a fixation point appeared at the center of the screen 
followed immediately by the translating rectangle. After 
0.6 sec the stimulus disappeared and an arrow appeared. 
One end of  the arrow was fixed to the fixation point and 
the other end could be moved with a mouse device. 
Observers rotated the arrow to select the perceived 
direction of  edge translation and recorded their response 
with a button press. Each subject completed five blocks 
of  56 trials per condition. Block order was randomized 
across subjects. Each subject completed a few practice 
trials before beginning the experiment. No feedback was 
provided. These general procedures and stimuli were used 
in all subsequent experiments. 

Results and discussion 

Performance was identical across figure orientation 
(45 deg clockwise or counterclockwise from horizontal) 
and visible edge location (i.e. above, below, right, or left 
of fixation). Therefore, the results of  this and the later 
experiments are collapsed across figure orientation and 
reported as if the figure was always oriented 45 deg 
clockwise from horizontal and the visible edge was always 
located above and to the right of  fixation (as shown in 
Fig. 1). We report rightward translation along the 
horizontal as 0 deg and upward translation along the 
vertical as 90 deg. When the test edge was interpreted in 
isolation, it would appear to translate 45 deg from 
horizontal. The corners always appeared to translate 
vertically along the 90 deg axis. Therefore, whenever the 
edge was interpreted with the corners, it would appear 
to translate 90 deg from the horizontal. Intermediate 
directions of  translation fall between 45 and 90 deg. The 
measures of  spatial separation refer to the distance 
between the vertices of  the nearest corners and the center 
of  the test edge. 

Because performance did not significantly differ across 
subjects, the results are shown in Fig. 2 collapsed across 
subjects. Across all depth conditions, the perceived 
direction of  edge translation depended strongly on 
the proximity of the corners to the edge (P < 0.01). As the 
distance between the corners and edge increased, the 
perceived direction of the edge changed from vertical 
(90 deg) to orthogonal to its own orientation (45 deg). 
A separation distance of  1.4 deg between the center of  
VR 35/20~D 

~ .  l ~  Squ. No Disp 
] ---- Squ. D~panty 
I~(~Z Circ. No Oi.~ ¢ -  

.g 80' 

70'  

U.I 
~ 60 
G) 

old 
o_ 50 '  

Experiment 1 
Perceived Direction of Edge Translation 

Across Depth Cue & Proximity 

4 0  . . . .  i . . . .  i . . . .  i 

0.5 1.0 1.5 2.0 

S HORT C O M M U N I C A T I O N  2891 

Separation Distance (DVA) 

F I G U R E  2. Results of  Expt 1. The data are collapsed across observers 
and the error bars represent SEs. The solid symbols show data from the 
disparity conditions with square (Squ.) or circular (Circ.) apertures. The 
open symbols show data from the monocular depth conditions. The 
perceived direction of edge translation changed with the distance 

separating the edge and corners. 

the test edge and nearest corner marked the point of  
transition between the independent and the corner- 
dominated interpretation of  the edge. These results 
suggest that the visual system can use unambiguous 
motion signals to overcome the aperture problem, but 
only within a limited spatial range. Indeed, proximity 
(Koffka, 1935) appears to be a more powerful constraint 
on motion interpretation than object rigidity. While the 
visual system is thought to select motion interpretations 
consistent with rigid objects (Ullman, 1979), subjects in 
this experiment often interpreted the rectangle non- 
rigidly even though a rigid interpretation was always 
available. 

While contour length variability (Lorenceau & 
Shiffrar, 1992) and binocular disparity (Shimojo et al., 
1989) facilitate the integration of ambiguous motion 
signals across contours, no such facilitation appears for 
unambiguously translating corners. Although the dis- 
parity magnitude used in this experiment falls within the 
range used by previous researchers, our results do not rule 
out the possibility that greater disparities are needed to 
enhance the assimilation of ambiguous and unambiguous 
velocity estimates across space. Nonetheless, these results 
do suggest that facilitation of  depth cues on motion 
integration across space ~ may not extend to images 
containing unambiguous velocity estimates. 

Another purpose of  this study was to determine the 
spatial extent of the disambiguating effect of  contour 
discontinuities under optimal conditions. Previous 
research using disconnected curves and dashes as 
stimuli suggested that proximity had little influence on 
the interpretation of  ambiguously translating curves 
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(Nakayama & Silverman, 1988). Other "motion 
cooperativity" studies have suggested spatial extents of 50 
(Nawrot & Sekuler, 1990) and 15 minarc  (Chang & 
Julesz, 1984) within which velocity estimates are 
integrated. These variations in the spatial estimates of 
velocity integration suggest that distance alone may not 
determine motion integration. Some models use a single 
distance parameter to define what velocity estimates 
should be integrated (Grzywacz & Yuille, 1991). 
However, if figural or collinearity cues suggest that 
velocity estimates define the same object then the distance 
over which those velocities are integrated may shift 
(Braddick, 1993). The following experiment assesses the 
relative strength of two potential object cues. 

EXPERIMENT 2: COLLINEARITY AND CLOSURE 

Closure facilitates object detection (Kovacs & Julesz, 
1993) and thus may also facilitate velocity integration. 
The influence of closure on motion integration was tested 
by removing two apertures, and hence two visible corners, 
from the translating rectangle stimulus. Is collinearity of 
the edge with the corners important? Previous work 
suggests that there is increased cooperative processing 
between aligned line segments or corners (Peterhans & 
vonder  Heydt, 1989; Grossberg & Mingolla, 1993). Thus, 
the corners may have a greater influence on perceived edge 
translation when the corners and edge are collinear. 

Methods 

Observers viewed translating rectangles through three 
circular apertures positioned so that one aperture 
displayed an edge and two apertures displayed corners, as 
shown in Fig. 3(A). There were two conditions: either the 
corners were collinear with the edge or they were 
noncollinear and belonged to the opposite rectangle side. 
The same corner-edge separation distances from Expt 1 
were used. The white rectangle outline was positioned 
at 11 min arc uncrossed disparity while the circular 
apertures were at zero disparity. Subjects wore 
three-dimensional glasses and completed five blocks of 56 
trials per condition. Again, subjects indicated the 
perceived direction of edge translation. 

Results and discussion 

The results, shown in Fig. 4, suggest that collinearity is 
a critical factor in the integration of unambiguous and 
ambiguous velocity estimates. When the corners were not 
collinear with the ambiguously translating edge, the 
corner velocities were not used to interpret the edge. 
However, when the corners were collinear with the edge, 
the corners influenced perceived edge translation for 
spatial separations < 1.4 dva. It is still possible that 
non-collinear corners influence perceived edge translation 
for spatial separations < 0.5 dva. However, the point that 
we wish to emphasize is that proximity alone does not 
determine velocity integration. Rather, the relative 
organization of features also influences velocity inte- 
gration. Thus, our results are not consistent with models 

of motion perception in which all velocity estimates 
falling within some fixed spatial region are integrated. 
These finding also support the enhancement of 
cooperative processing between aligned contour disconti- 
nuities (Wertheimer, 1923; Peterhans & v o n  der Heydt, 
1989; Grossberg & Mingolla, 1993). Finally. this 
collinearity effect might explain why previous studies 
found minimal proximity differences in the motion 
integration of non-collinear, non-overlapping curve and 
dash stimuli (Nakayama & Silverman, 1988). 

The second factor that this experiment addressed was 
closure. Our results suggest that two visible corners are 
sufficient to disambiguate the edge motion when the 
corners are near and collinear to the edge. The spatial 
extent of corner influence for the two collinear corners did 
not significantly differ from the results obtained in Expt 
1 for the same condition with four visible corners 
( P >  0.10). Thus, figural organization at the level of 
complete objects may have little effect on motion 
integration. 

EXPERIMENT 3: GAP SIZE 

In the previous experiments, the distance between the 
corner vertices and the center of the visible edge varied 
systematically with the distance between corner and edge 
terminators (gap size). To determine which of these 
distances is key, we conducted a final experiment in which 
gap size varied for a fixed rectangle size. If the distance 
between the corner vertex and the edge is the critical 
distance, then observers should always perceive the same 
edge translation across variations in gap size. However. 
if terminator separation is the critical distance in motion 
integration across contours, then perceived edge 
translation should vary with the distance between the 
edge and corner terminators. 

Methods 

A translating rectangle at l l min arc uncrossed 
disparity was visible through three circular apertures at 
zero disparity, as shown in Fig. 3(B). Unlike previous 
experiments only one rectangle length (3.6dva), or 
vertex-edge separation (1.8 dva), was used. Previously, 
observers did not perceive the edge to translate with the 
corners at this separation. We manipulated gap size by 
varying aperture diameter. There were five possible 
aperture diameters: 1.40, 1.25, 1.10, 0.95 and 0.80 dva; 
which resulted in five possible gap sizes: 0.40, 0.55, 
0.70, 0.85 and 1.0 dva respectively. Each subject wore 
three-dimensional glasses and completed five blocks of 40 
trials in which they indicated the perceived direction of 
edge translation. 

Results and discussion 

The results, shown in Fig. 5, indicate that perceived 
edge translation depended significantly on the distance 
separating the corner and edge terminators (P < 0.05), 
even though the distance between the corner vertex and 
the visible edge remained constant. The unambiguously 
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(A) 

(B) 

FIGURE 3. (A) Stimuli for Expt 2. The translating rectangle was viewed through three apertures. Two corners and one edge 
were visible. The corners were either collinear or non-collinear with the test edge. The distance between the corners' vertices and 
the center of the test edge was varied. (B) Stimuli for Expt 3. A single fixed size rectangle was viewed through three apertures. 

The size of the apertures varied to manipulate the distance between the terminators of the edge and corners (gap size). 

translating corners influenced perceived edge translation 
when the gap size was <0.7 dva. It appears that the 
distance between the nearest points of  any two contours 
may influence whether their velocity estimates are 
integrated. This finding suggests that motion is first 
integrated along contours (Hildreth, 1984) and only after 
this local integration occurs can integration across 
contours take place. 

GENERAL DISCUSSION 

The accurate interpretation of  object motion requires 
the integration of  velocity estimates from the same object 
as well as the segmentation of  velocity estimates from 
different objects. Feature based models of motion analysis 

suggest that velocity estimates from contour dis- 
continuities dominate the interpretation of  object motion 
(Shiffrar & Pavel, 1991; Lorenceau & Shiffrar, 1992; 
Rubin & Hochstein, 1993). An unrestricted reliance on 
such velocity estimates would result in image segmenta- 
tion errors. The purpose of the current experiments was 
to identify how such feature based models could be 
adapted to accurately segment moving images. 

Our studies suggest that unambiguously translating 
comers can influence the perceived direction of  
ambiguously translating edges within limited spatial 
separations. Separation distances appear to be defined by 
the minimum distance between two contours. Collinear- 
ity, but not object closure, also significantly influences the 
spatial range within which the visual system relies on 
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F IGURE 4. Results of Expt 2. The data for each subject are shown. The 
solid symbols show the results of the collinear condition and the open 
symbols show the results of the non-collinear condition. The edge only 
appeared to translate with the corners when the corners were collinear 

to and near the visible edge. 

u n a m b i g u o u s  ve loc i ty  es t imates .  Thus ,  d i s t ance  a l o n e  

does  n o t  d e t e r m i n e  m o t i o n  in t eg ra t ion .  La t e r a l  c o n n e c -  

t ions  w o r k i n g  wi th in  a l imi ted  spat ia l  r ange  m a y  be 

i n v o l v e d  in the  i n t e r p r e t a t i o n  o f  edge  m o t i o n  (Pe t e rhans  

& v o n  der  H e y d t ,  1989; Cas te r  et  al . ,  1993; G r o s s b e r g  & 

M i n g o l l a ,  1993; L o r e n c e a u  et  al . ,  1993). 

A n o t h e r  w a y  to c o n s i d e r  these  resul ts  is tha t  w i th in  a 

l imi ted  spa t ia l  r ange ,  the  c o r n e r  ve loc i ty  " c a p t u r e s "  the  

edge  ve loc i ty .  M o t i o n  c a p t u r e  refers  to  a b iased  m o t i o n  

analys is  in wh ich  the  p e r c e i v e d  d i r ec t i on  o f  one  i m a g e  
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EIGU RE 5. Results of Expt 3. The results for three observers are shown 
individually. The perceived direction on edge translation was directly 

related to the separation distance between the terminators. 

f ea tu re  is c o n t r o l l e d  o r  c a p t u r e d  by the velocity, oI 

a n o t h e r  f ea tu re  ( R a m a c h a n d r a n ,  1985; R a m a c h a n d r a n  & 

C a v a n a g h ,  1987; Y o  & Wi l son ,  1992). T h e  a n a l o g y  o f  a 

l e o p a r d  r u n n i n g  t h r o u g h  a fores t  is o f t en  used to desc r ibe  

this p h e n o m e n o n .  M o t i o n  c a p t u r e  is t h o u g h t  to enab le  

the  v isual  sys tem to m o r e  efficiently g r o u p  the l e o p a r d ' s  

spots  wi th  the  ou t l ine  o f  the l e o p a r d ' s  b o d y  ( R a m a c h a n -  

d ran  & C a v a n a g h ,  1987). T h e  l imi t a t ions  on  m o t i o n  

c a p t u r e  desc r ibed  in this p a p e r  sugges t  h o w  the v isual  

sys tem m i g h t  a v o i d  c a p t u r i n g  the leaves  on  the fores t ' s  

trees wi th  the  l e o p a r d ' s  body .  
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