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ABSTRACT—Brain-imaging research has largely focused on

localizing patterns of activity related to specific mental

processes, but recent work has shown that mental states

can be identified from neuroimaging data using statistical

classifiers. We investigated whether this approach could be

extended to predict the mental state of an individual using

a statistical classifier trained on other individuals, and

whether the information gained in doing so could provide

new insights into how mental processes are organized in

the brain. Using a variety of classifier techniques, we

achieved cross-validated classification accuracy of 80%

across individuals (chance 5 13%). Using a neural net-

work classifier, we recovered a low-dimensional repre-

sentation common to all the cognitive-perceptual tasks in

our data set, and we used an ontology of cognitive pro-

cesses to determine the cognitive concepts most related to

each dimension. These results revealed a small organized

set of large-scale networks that map cognitive processes

across a highly diverse set of mental tasks, suggesting a

novel way to characterize the neural basis of cognition.

Neuroimaging has long been used to test specific hypotheses

about brain-behavior relationships. However, it is increasingly

being used to infer the engagement of specific mental processes.

This is often done informally, by noting that previous studies

have found an area to be engaged for a particular mental process

and inferring that this process must be engaged whenever that

region is found to be active. Such reverse inference has been

shown to be problematic, particularly when regions are unse-

lectively active in response to many different cognitive manip-

ulations (Poldrack, 2006). However, recent developments in the

application of statistical classifiers to neuroimaging data pro-

vide the means to directly test how accurately mental processes

can be classified (e.g., Hanson & Halchenko, 2008; Haynes &

Rees, 2006; O’Toole et al., 2007).

In this study, we first examined how well classifiers can predict

which of a set of eight cognitive tasks a person is engaged in, on the

basis of patterns of activation from other individuals, and we found

that such predications can be highly accurate. We next examined

the dimensional representation of brain activity underlying this

classification accuracy and found that the differences among these

tasks can be described in terms of a small set of underlying di-

mensions. Finally, we examined how these distributed neural di-

mensions map onto the component cognitive processes that are

engaged by the same eight diverse tasks, by mapping each task onto

an ontology of mental processes. The results demonstrate how

neuroimaging can in principle be used to map brain activity onto

cognitive processes, rather than onto tasks.

There is increasing interest in using the tools of machine

learning to identify signals that can allow brain-reading, or

prediction of mental states or behavior directly from neuro-

imaging data (O’Toole et al., 2007). These tools, known as

classifiers, are first trained on functional magnetic resonance

imaging (fMRI) data from one subset of the participant’s data (in-

sample data) and then used to make predictions about patterns in

a different subset of the same person’s data set (out-of-sample

data). Such methods typically show perfect classification on the

in-sample training data, and classification ranges between 70 to
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chology, RUMBA Lab, Rutgers University, Newark, NJ 07102,
e-mail: jose@psychology.rutgers.edu.

PSYCHOLOGICAL SCIENCE

Volume ]]]—Number ]] 1Copyright r 2009 Association for Psychological Science

P S C I 2 4 6 0 B Dispatch: 29.9.09 Journal: PSCI CE: Blackwell

Journal Name Manuscript No. Author Received: No. of pages: 9 PE: TMS

PSCI 2460(B
W

U
S 

PS
C

I 
24

60
 W

eb
pd

f:
=

09
/2

9/
20

09
 0

9:
03

:4
8 

15
45

73
2 

B
yt

es
 9

 P
A

G
E

S 
n 

op
er

at
or

=
hv

.a
na

nt
ha

) 
9/

29
/2

00
9 

9:
04

:2
0 

PM



90% correct for out-of-sample data, which is quite exceptional

given the noisiness of the fMRI signal. For example, it is now

well established that fMRI data from the ventral temporal cortex

provide sufficient information to accurately predict what class of

object (e.g., faces, houses) a person is viewing (Hanson &

Halchenko, 2008; Hanson, Matsuka, & Haxby, 2004; Haxby

et al., 2001). In other kinds of tasks, one can tell whether the

subject is conscious of visual information (Haynes & Rees,

2005), or can even ‘‘read out’’ the intention of the subject prior to

his or her behavioral response (Haynes et al., 2007). Thus, it is

possible to reliably identify mental states for a given individual

who is engaged in a specific task, using training data from the

same individual. There have also been some demonstrations of

accurate prediction to new individuals (Mourao-Miranda,

Bokde, Born, Hampel, & Stetter, 2005; Shinkareva et al., 2008)

when a relatively limited set of stimulus classes has been used.

CLASSIFYING TASKS ACROSS INDIVIDUALS

To investigate classification of tasks across individuals, we

combined data from eight fMRI studies (performed in the first

author’s laboratory) that included a total of 130 participants

performing a wide range of mental tasks (see Table 1). The data

were all collected on the same 3-T MRI scanner with consistent

acquisition parameters, and were analyzed using the same data-

analysis procedures (described in the Supporting Information

available on-line—see p. XXX). This large-scale and method-

ologically consistent data set allowed us to investigate whether it

is possible to tell which mental task a person is engaged in solely

on the basis of fMRI data.

For each subject, a single statistical parametric (z) map was

obtained for a contrast comparing the task condition with a

baseline condition. These z-statistic data were submitted to

classification using a multiclass linear support vector machine

(SVM; Boser, Guyon, & Vapnik, 1992; Hsu & Lin, 2002;

Schölkopf & Smola, 2002). SVM analysis provides a computa-

tionally tractable means to classify extremely high-dimensional

data (in this case, the data included more than 200,000 fea-

tures). Accuracy at predicting which task a subject was per-

forming was computed using leave-one-out cross-validation:

The classifier was trained on all subjects except for one and then

tested on that out-of-sample individual, and this method was

repeated for each individual (Supplementary Fig. 1 in the

Supporting Information available on-line provides an overview

of the analysis).

Using data from the intersection set of in-mask voxels (which

included 214,000 voxels across the entire brain), we achieved

80% classification accuracy for subjects in the out-of-sample

generalization set. Similar levels of accuracy were obtained

using neural network classifiers (for an exhaustive list of clas-

sifier results with this data set, see Supplementary Table 1 in the

Supporting Information available on-line). Table 2 presents the

confusion matrix for this analysis, which shows that all tasks

were classified with relatively high accuracy, though there was

some variability across tasks. Statistical significance of the

classification accuracy achieved (vs. accuracy levels expected

by chance) was assessed using a randomization approach to

obtain an empirical null distribution. Mean chance accuracy

was 13.3%, and according to this analysis, accuracy greater than

18.5% is significantly greater than chance at p < .05.

When the classifier was trained on one run and then gener-

alized to a second run for the same individuals (for the six tasks

that had multiple runs), 90% classification accuracy was

achieved for the second run (for the confusion matrix for this

analysis, see Supplementary Table 2a in the Supporting Infor-

mation available on-line). Thus, the accuracy of task classifi-

cation across individuals was nearly as high as the accuracy of

the generalization across runs within individuals. It is difficult to

compare these accuracy levels with those obtained in previous

studies of within-subjects classification, because those studies

have often used much smaller image sets or single images to

perform classification, whereas we used summary statistical

images in the present analysis.

If this classification ability relies on general cognitive features

of the tasks, then it should be possible to classify individuals

performing different versions of the same tasks on which the

classifier was trained. We examined this possibility with data

from two additional studies, which used slightly different ver-

sions of two of the tasks on which the classifier was trained

(probabilistic classification and response inhibition). These data

sets were collected from subjects who were included in the

original training set, but for different tasks (working memory and

reading aloud, respectively). When the classifier was trained

excluding the data from these subjects from the original set,

accurate classification (84%) was obtained for the new data sets

(see Supplementary Table 2b in the Supporting Information

available on-line). Thus, the classifier trained on the original

TABLE 1

Tasks in the Data Set

Task name
Number of
subjects Design type

Risk taking (balloon-analogue

risk task) 16 Event-related

Classification (probabilistic

classification, no feedback) 20 Event-related

Rhyme judgments (pseudowords) 13 Blocked

Working memory (tone counting) 17 Blocked

Gambling decisions

(50/50 gain/loss gambles) 16 Event-related

Semantic judgments (living/nonliving

decision on mirror-reversed words) 14 Event-related

Reading aloud (pseudowords) 19 Event-related

Response inhibition (stop-signal task) 15 Event-related

Note. Only one scanning run was available for the rhyme-judgments and
working memory tasks.
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data was able to accurately generalize to different studies using

different versions of the same mental tasks. When the data sets

from those same subjects (performing different tasks) were in-

cluded in the training set, accuracy was reduced but still high

(66%; see Supplementary Table 2c in the Supporting Informa-

tion). This decrease in accuracy reflects the fact that the clas-

sifier was somewhat sensitive to individual characteristics of the

training examples; in particular, subjects who performed the

response-inhibition task in the test data but the reading-aloud

task in the training data were often (7 out of 20 subjects) mis-

classified as performing reading aloud in the test. No such

misclassification occurred for the probabilistic classification

task. These results demonstrate that the classifier was more

sensitive to task-relevant information than to idiosyncratic ac-

tivation patterns of individual subjects, but did retain some

sensitivity to task-independent patterns within individuals.

LOCALIZING THE SOURCES OF CLASSIFICATION
ACCURACY

To determine the anatomical sources of the information that

drove classification accuracy, we used two independent sensi-

tivity methods to identify anatomical areas that were potentially

diagnostic for correct classification by the SVM classifier. First,

we looked at the predictive power of activation within each of a

set of independent anatomical regions of interest (ROIs) using

an SVM classifier within each ROI. Second, for every voxel we

applied a localized SVM that was centered at that voxel and had

a fixed radius of 4 mm (Hanson & Gluck, 1990; Kriegeskorte,

Goebel, & Bandettini, 2006; Poggio & Girosi, 1990). Results of

these analyses tended to be consistent and indicated that many

regions throughout the cortex provided information that allowed

some degree of accurate prediction (30–50%) of cognitive states

(Fig. 1; see Supplementary Table 3 in the Supporting Informa-

tion available on-line).

Sensory cortices provided substantial predictability. Given

the fact that the different studies varied substantially in char-

acteristics of the visual stimuli and also varied in whether

auditory stimuli were present, this was not surprising. These

results suggested that the classification did not necessarily re-

flect the higher-order cognitive aspects of the tasks. However, a

number of regions in the prefrontal cortex, including the pre-

motor and anterior cingulate cortices, also showed substantial

ability to predict tasks. Strikingly, when the local kernel extent

in the localized SVM analysis was expanded to 8 mm, one of the

only regions not providing substantial classification accuracy

was in the bilateral dorsolateral prefrontal cortex (see Supple-

mentary Fig. 2 in the Supporting Information available on-line).

This could reflect the fact that this region is equally engaged

across mental tasks (Duncan & Owen, 2000), that substantial

individual variability renders it nonpredictive across subjects,

or that the radial ROIs were too small for the classifier to detect

relevant interregional interactions.

These sensitivity analyses demonstrated which regions pro-

vide information that might be useful for task classification, but

did not tell us which regions are diagnostic for particular tasks.

In order to determine this, we performed an analysis that mea-

sured the diagnosticity of each voxel—that is, the degree to

which activity in each voxel was predictive of a specific task. We

determined which voxels from the whole-brain data set had the

greatest effect on the classifier’s error, which is equivalent to

determining the effect of removing voxels individually to see

which ones have the greatest effect on the classification (for

details, see Supplementary Methods in the Supporting Infor-

mation available on-line). The results of this analysis (see

Supplementary Fig. 3 in the Supporting Information) showed

that the set of voxels identified as diagnostic for each task

heavily overlapped with, but was much smaller than, the set of

voxels that were identified as active in a standard general linear

model (GLM) analysis. These analyses had different goals: For

the GLM, the goal was detection of active voxels, whereas for the

TABLE 2

Confusion Matrix for the Support Vector Machine Analyses

True task

Predicted task

Risk
taking Classification

Rhyme
judgments

Working
memory

Gambling
decisions

Semantic
judgments

Reading
aloud

Response
inhibition Accuracy

Risk taking 14 0 0 0 1 0 1 0 87.50%

Classification 0 18 0 0 0 0 1 1 90.00%

Rhyme judgments 1 2 8 0 1 1 0 0 61.54%

Working memory 0 0 0 14 0 0 0 3 82.35%

Gambling decisions 0 3 0 0 11 2 0 0 68.75%

Semantic judgments 0 2 0 0 1 11 0 0 78.57%

Reading aloud 0 1 0 0 0 0 17 1 89.47%

Response inhibition 0 0 0 1 0 0 3 11 73.33%

Note. The table presents results obtained using leave-one-out cross-validation. The numbers in each row indicate how many subjects were classified as per-
forming each task when they were actually performing the task indicated by the row label.
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classifier analysis, the goal was identification of voxels that are

diagnostic for tasks; the latter kind of analysis is more stringent,

but has the potential for higher specificity (Hanson & Hal-

chenko, 2008).

RELATING NEURAL AND PSYCHOLOGICAL
SIMILARITY SPACES

The ability to accurately classify mental tasks using brain-

imaging data requires that brain patterns from the same task are

more similar to each other in the high-dimensional voxel space

than they are to patterns from different tasks. Therefore, we next

set out to examine how this neural similarity space is related to

the psychological similarity space of the specific tasks used in

the data set. We accomplished this by visualizing the location of

each subject’s brain data in a brain activation space with greatly

reduced dimensionality.

The SVM analysis provided strong evidence for a valid clas-

sification function based on whole-brain data (200,000 fea-

tures). Although the identified support vectors were diagnostic

of the boundaries of the decision surface, by design they could

not at the same time provide probabilistic information about the

underlying feature space or the class-conditional probability

distributions. However, given the impressive performance of the

SVM classifier, it was likely that a conservatively chosen fea-

ture-selection/-extraction approach could be used to approxi-

mate the classification function identified and at the same time

(unlike the classifier) allow visualization of the feature space

and provide information on the class-conditional probability

distribution.

One candidate for this classification approximation was a

related learning method: neural networks, which are additive

sigmoidal kernel function approximators. Neural networks

have the ability to both select exemplar patterns (as SVMs

do) and find prototypes based on ‘‘interesting’’ projections

in the feature space. Unsupervised dimensionality-reduction

methods, such as principal- or independent-components

analysis, can also identify lower-dimension projections of

fMRI data, but are not constrained at the same time by the

particular classification problem, as is a neural network.

However, one limitation of neural networks is that, depending

on the complexity of the decision surface, they are limited

to processing about 10,000 features because of memory and

computational constraints. Thus, the present data set required

feature selection in order for us to apply a neural network

analysis.

44%20% 20% 41%

Fig. 1. Localized accuracy of reverse inference from brain activity to task engagement across the
eight cognitive tasks. Accuracy for each voxel was determined using a searchlight technique (lo-
calized support vector machine applied within a region of interest centered at that voxel and having a
4-mm radius). Results were overlaid on a population-average surface using CARET software (Van
Essen, 2005). The left panel presents lateral (top) and medial (bottom) views of the left hemisphere,
and the right panel presents corresponding views of the right hemisphere.
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We performed feature selection by computing the relative

entropy in each voxel over all brains and tasks; compared with

feature selection using variance within features, this approach

provided a more sensitive measure of voxel sensitivity to brain

and task variation. At a threshold of p < .01, this measure of

relative entropy identified 2,173 voxels; the selected voxels

were sparsely distributed throughout the brain (see Supple-

mentary Fig. 4 in the Supporting Information available on-line).

These voxels were used to train a sigmoidal neural network (with

a varied number of hidden units), which was able to produce

classification accuracy similar to that obtained with the SVM

analyses using whole-brain data (accuracy was 71% when the

model included six hidden units, and including more hidden

units resulted in little improvement; see Supplementary Table 1

in the Supporting Information). To further confirm the validity of

entropy-based feature selection, we used these voxels with an

SVM classifier, which achieved accuracy (72%) that was slightly

reduced from that obtained in the original analysis using more

than 200,000 voxels. Thus, feature selection produced a com-

pression factor of 100 to 1.

The neural network classifier was trained on all exemplars and

was able to achieve high classification accuracy and simulta-

neously project (by extraction of new features) the data into a

lower-dimensional subspace (six hidden units). To further

characterize this space, we first performed an agglomerative

hierarchical cluster analysis (for details, see Supplementary

Methods in the Supporting Information available on-line) in the

six-dimensional space derived from the hidden units of the

network. Figure 2 illustrates the results. It was clear from this

cluster space that the neural activity patterns not only preserved

task differences, but also reflected the similarity structure of the

mental tasks. For example, the three tasks that required lin-

guistic processing (reading aloud, rhyme judgments, and se-

mantic judgments) were adjacent, as were the two tasks that

Task

Gambling Decisions Reading Aloud

Semantic Judgments

Response Inhibition

Working Memory

Risk Taking

Classification

Rhyme Judgments

H
id

de
n 

U
ni

ts

1
2
3
4
5
6

Fig. 2. Visualization of the reduced-dimension data set. The cluster tree is based on a hierarchical clustering solution using the six-dimension data
obtained from the hidden-unit activity in a neural network presented with each individual’s data. The data for each component for each subject are
presented in gray-scale form in the lower panel; brighter shadings represent higher values on each component. Each final branch in the tree and
each column in the gray-scale component map represents a single individual. The color bar between the tree and the component map represents the
task that each subject actually performed in the data set. (For additional information about the tasks, see Table 1.)
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required attention to auditory stimuli (working memory and

response inhibition).

In order to characterize the derived dimensionality of the task

space, we constructed a visualization of the dimensions for each

task using star plots, which coded the contribution of each di-

mension to each task. These plots (Fig. 3) revealed that brain

functions across these diverse tasks were organized on a small

set (three to six) of unknown functional features, which suggests

that all the tasks recruited similar brain networks, to different

degrees.

MAPPING NEURAL AND MENTAL SPACES USING
ONTOLOGIES

To characterize the neural dimensions obtained from the neural

network analysis in terms of basic mental processes, we coded

each task according to the presence or absence of a number of

such processes (as depicted in Supplementary Fig. 5 in the

Supporting Information available on-line). These processes

were then projected onto all six functional dimensions in order to

characterize which cognitive processes were most strongly re-

lated to each neural processing dimension (Fig. 4).

Dimension 1 loaded most heavily on the cognitive concept

‘‘audition,’’ and the neural pattern associated with this dimen-

sion was primarily centered on the superior temporal gyrus (i.e.,

auditory cortex) and precentral gyrus. Dimension 2 was asso-

ciated with language processes, and engaged a bilateral network

including Broca’s and Wernicke’s areas and their right-hemi-

sphere homologues, as well as parahippocampal gyrus, medial

parietal, and medial prefrontal regions. Dimensions 3 and 4

were associated with learning and memory and decision-making

processes, and engaged highly overlapping sets of neural

Risk Taking

Dimension 1

Classification Rhyme Judgments

Working Memory Gambling Decisions Semantic Judgments

Reading Aloud Response Inhibition

Dimension 2 Dimension 3

Dimension 6Dimension 5Dimension 4

Fig. 3. Dimensional loadings for each task. The six dimensions were extracted from the neural
network trained on the reduced feature set. The coefficient loading for each dimension in each task is
coded by the relative size of that dimension’s wedge in the plot.
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structures, including the thalamus, striatum, amygdala, medial

prefrontal cortex, and parietal cortex. Dimension 5 was mostly

strongly associated with memory and vision, and was tightly

focused on the dorsomedial thalamus and dorsal striatum. Fi-

nally, Dimension 6 showed a pattern of loading that was very

similar to activation observed in studies of response inhibition

(right inferior frontal gyrus, basal ganglia, and medial prefrontal

cortex; e.g., Aron & Poldrack, 2006), and the mental concept

most associated with this pattern was indeed ‘‘response inhibi-

tion.’’ In each case, the pattern was not restricted to the concepts

just indicated; Figure 4 shows that other concepts had strong

loadings on these dimensions as well. These data suggest that

the functions of these networks are only partially captured by the

specific terms we have used; however, the relatively small

number of tasks included in the analysis certainly biased the

particular associations that were observed.

DISCUSSION

The results presented here show that fMRI data contain suffi-

cient information to accurately determine an individual’s mental

state (as imposed by a mental task) by using classifiers trained

on data from other individuals. This finding generalizes previous

results, which have demonstrated accurate classification within

individuals (Hanson et al., 2004; Haxby et al., 2001; Haynes &

Rees, 2005) and between individuals (Mourao-Miranda et al.,

2005; Shinkareva et al., 2008), and provides a proof of concept

that fMRI can be used to detect a broad range of cognitive states

in previously untested individuals. The results also demonstrate

how large-scale neuroimaging data sets can be used to test

theories about the organization of cognition. Whereas previous

imaging studies have nearly always focused on determining the

neural basis of a particular cognitive process using specific task

Fig. 4. Visualization of the loading of mental concepts onto brain systems. The slice images show
regions that exhibited positive (red or yellow) loading on each of the six dimensions identified in the
neural network analysis; the original voxel loading maps were smoothed in order to create these
images. The tag clouds above the images represent the strength of association between a set of
cognitive concepts and these dimensions; larger words (darker shades) were more strongly associated
with the indicated dimension.
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PSCI 2460(B
W

U
S 

PS
C

I 
24

60
 W

eb
pd

f:
=

09
/2

9/
20

09
 0

9:
03

:4
8 

15
45

73
2 

B
yt

es
 9

 P
A

G
E

S 
n 

op
er

at
or

=
hv

.a
na

nt
ha

) 
9/

29
/2

00
9 

9:
04

:2
0 

PM



comparisons to isolate that process, the approach outlined here

shows how data from multiple tasks can be used to examine the

neural basis of cognitive processes that span across tasks. To the

degree that cognitive theories make predictions regarding the

similarity structure of different tasks, these theories could be

tested using neuroimaging data.

Relation to Standard Neuroimaging Analyses

The standard mass-univariate approach to fMRI analysis is

aimed at answering the following question: What regions are

significantly active when a specific mental process is manipu-

lated? Examination of the statistical maps associated with each

of the eight tasks in the present study revealed substantial

overlap between different sets of tasks, as well as some dis-

tinctive features. Our classifier analysis answered a very

different question: What task is the subject most likely engaged

in, given the observed pattern of brain activity? In the neuro-

imaging literature, it is common for researchers to use univariate

maps to infer the engagement of specific mental processes from

univariate analyses (i.e., reverse inference), but without using a

classification technique, it is impossible to determine the ac-

curacy of such inferences. More directly, our diagnosticity

analysis shows that the set of voxels that are activated by a task is

much larger than the set of voxels whose activity is diagnostic for

engagement in a particular task. This suggests that informal

reverse inference is almost certain to be highly inaccurate in

task domains like those we examined and that approaches like

the one used here are necessary in order to make strong infer-

ences about cognitive processes from neuroimaging data.

Ontologies for Cognitive Neuroscience

The use of formal ontologies (Bard & Rhee, 2004), such as the

Gene Ontology (Ashburner et al., 2000), has become prevalent

in many areas of bioscience as a means to formalize the relation

between structure and function. The results of our analysis, in

which a simple ontology of mental processes was mapped onto

dimensions of neural activity, provide a proof of concept for the

utility of cognitive ontologies as a means to better understand

how mental processes map to neural processes (cf. Bilder et al.,

2009; Price & Friston, 2005). Currently, it is not possible to

determine how well the methods we used could scale to a larger

analysis using a complete ontology of mental states. Such ana-

lyses would require large databases of statistical results from

individual subjects, which are not currently available. The

present results suggest that such databases could be of signifi-

cant utility to the cognitive-neuroscience community. In addi-

tion, it is likely that differences in acquisition parameters will

have significant effects on the ability to classify and cluster

neuroimaging data across studies. The development of neuro-

imaging consortia that use standardized data-acquisition pa-

rameters could help reduce this problem.
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