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FIGURE 8.1
My (probably)
8th birthday.
L-R: My brother
Paul (who still
hides behind
cakes rather
than have his
phato taken),
Paul Sprecklay,
Alan Palsey, Clair
Sparks and me

Having successfully slayed audiences at holiday camps around the country, my next step

towards global domination was miy primary school. T had learnt another Chuck Berry song :
(Johnny B. Goode?), but also brpadened my repertoire to include songs by other artists
(I have a feeling ‘Over the edge’ by Status Quo was one of them).! Needless to say, when
the opportunity came to play at ia school assembly I jumped at’it. The headmaster tried
to have me banned,? but the show went on. It was a huge success (I want to reiterate my

! This would have been about 1982, so just before they became the most laughably bad band on the planet. Some

would argue that they were always the most laughably bad band on the planet, but they were the first band that
I called my favourite band.

? Seriously! Can you imagine, a headmaster banning a 10 year old from assembly? By this time I had an electric guitar
and he used to play hymns on an acoustic guitar; I can assume only that he somehow lost all perspective on the situ-
ation and decided that a 10 year old blasti g out some Quo in a squeaky little voice was subversive or something,

¢ Tol 43| - Py 327
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earlier point that 10 year olds are very easily irrllpressed). My classmates carried me around
the playground on their shoulders. I was a hero| Around this time I'had a childhood sweet-
heart called Clair Sparks. Actually, we had been sweethearts since before my new-found
rock legend status. I don’t think the guitar playing and singing impressed her much, but she
rode a motorbike (really, a little child’s one) which impressed mze quite a lot; I was utterly
convinced that we would one day get married and live happily ever after. I was utterly
convinced, that is, until she ran off with Simon Hudson. Being 10, she probably literally
did run off with him - across the playground. To. make this important decision of which
boyfriend to have, Clair had needed to compare two things (Andy and Simon) to see which
one was better; sometimes in science we want to do the same thing, to compare two things
to see if there is evidence that one is different tq the other. This chapter is about the process
of comparing two means using a ¢-test. ’

9.2. Looking at differences ®

............................................. booenonne

Rather than looking at relationships between |variables, researchers are sometimes inter-
ested in looking at differences between groups of people. In particular, in experimental
research we often want to manipulate what happens to people so that we can make causal
inferences. For example, if we take two groups of people and randomly assign one group
a programme of dieting pills and the other group a programme of sugar pills (which they
think will help them lose weight) then if the people who take the dieting pills lose more
weight than those on the sugar pills we can infer that the diet pills caused the weight loss.
This is a powerful research tool because it goes|one step beyond merely observing variables
and looking for relationships (as in correlation|and regression).? This chapter is the first of
many that looks at this kind of research scenario, and we start with the simplest scenario:
when we have two groups, or, to be more specific, when we want to compare two means.
As we have seen (Chapter 1), there are two different ways of collecting data: we can either
expose different people to different experimental manipulations (between-group or inde-
pendent design), or take a single group of people and expose them to different experimen-
tal manipulations at different points in time (a|repeated-measures design).

Rt

A prﬁblgm with error baf graphs of

repeateﬂ“—\@easures designs ®
AN B

o | /
We also saw in Chapter 4 thatx‘i’t\,i\s important to visudlize group differences using error
bars. We're now going to look at™ problém thatf occurs when we graph repeated-
measures error bars. To do this, we’re gachg\to look 4t an example that I use throughout this
chapter (not because I am too lazy to think upndiff ﬁ{ent data sets, but because it allows me to
illustrate various things). The example relates tc:%ﬁe\t\her arachnophobia (fear of spiders) is spe-
cific to real spiders or whether pictures of spidefs camevoke similar levels of anxiety. Twenty-
four arachnophobes were used in all. Twelve/ were asked_to play with a big hairy tarantula
spider with big fangs and an evil look in its eight|eyes. Their Subsequent anxiety was measured.
The remaining twelve were shown only pictures|of the same big\‘bairy tarantula and again their
anxiety was measured. The data are in Table 9.1 (and spiderB G.sanf you're having difficulty
entering them into SPSS yourself). Remember Lhat each row in the \E{‘axg\ editor represents a

* People sometimes get confused and think that certain statistical procedures allow causal inferences and others
don’t (see Jane Superbrain Box 1.4). i

|
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The resulting error bar gféph is shown in Figurd9.7. Compare this graph to the graphs in
Figure 9.2 — what differefices do you see? The first thing to notice is that the means in the two
conditions have not changed. However, the error bars\nave changed: they have got smaller.
Also, whereas in Figure 9.2 the error bars overlap, in this hew graph they do not. In Chapter 2
we discovered that when error bars do not overlap we can be{mﬂy confident that our samples
have not comfe from the same population (and so our exper
successtf?/{f herefore, when we plot the proper error bars for aiexrepeated—measures data it
shows tié extra sensitivity that this design has: the differences between conditions appear to be
significant, whereas when djffereﬁ‘lt participants are used, there does not appear to be a signifi-
canft difference. (Remember that the means in both situations are identical, but the sampling

/érror is smaller in the repeated-measures design.) I expand upon this point in section 9.6.
S .

&

9.3. The t-test®

We have seen in previous chapters that the ¢-test is a very versatile statistic: it can be'used to
test whether a correlation coefficient is different from 0; it can also be used to test whether
a regression coefficient, b, is difgferent from 0. However, it can also be used to test whether
two group means are differentIt is to this use that we now turi.

The simplest form of experiment that can be done is one with only one independent varia-
ble that is manipulated in only two ways and only one outcome is measured. More often than
not the manipulation of the independent variable involves having an experimental condition
and a control group (see Field & Hole, 2003). Some examples of this kind of design are:

|

o Is the movie Scream 2 scarier than the original Scream? We could measure heart rates
(which indicate anxiety)g]during both films and compare them.

» Does listening to music fwhile you work improve your work? You could get some
- people to write an essay |(or book!) listening to their favourite music, and then write
a different essay when w‘zorking in silence (this is a control group). You could then
compare the essay grades!

' 1

|

mental manipulation has been -
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T mentioned in section 2.6.1 that most test statistics can be thought of as the ‘variance
explained by the model’ divided by the ‘variance that the model can’t explain’. In other words,
effect/error. When comparing two| means the ‘model’ that we fit to the data (the effect) is the
difference between the two group means. We saw also in Chapter 2 that means vary from sam-
ple to sample (sampling variation) and that we can use the standard error as a measure of how
much means fluctuate (in other words, the error in the estimate of the mean). Therefore, we
can also use the standard error of the differences between the two means as an estimate of the
error in our model (or the.error inl the difference between means). Therefore, we calculate the
t-test using equation (9.1) below. The top half of the equation is the ‘model” (our model being
the difference between means is bigger than the expected difference, which in most cases will
be 0 —we expect the difference between means to be different to zero). The bottom half is the
‘error’. So, just as I said in Chapter 2, we’re basically getting the test statistic by dividing the
model (or effect) by the error in the model. The exact form that this equation takes depends on
whether the same or different participants were used in each experimental condition:

expected difference
— between population means
(if null hypothesis is true)

observed difference
between sample means

estimate of the standard error of the
difference between two sample means

Assumptions pf the t-test @

Both the independent i-test and the dependent t-test are parameiric tests based on the normal
distribution (see Chapter 5). Therefore, they assume:

e The sampling distribution|is normally distributed. In the dependent #-test this means
that the sampling distribution of the differences between scores should be normal, not
the scores themselves (see|section 9.4.3).

o Data are measured at least at the interval level.

The independent #-test, because it is used to test different groups of people, also
assuimes: '

® Variances in these populaﬁons are roughly equal (homogeneity of variance).

® Scores are independent (Hecause they come from different people).

These assumptions were explained in detail in Chapter 5 and, in that chapter, I emphasized
the need to check these assum};ﬁtions before you reach the point of carrying out your sta-
tistical test. As such, I won’t go| into them again, but it does mean that if you have ignored
my advice and haven’t checked these assumptions then you need to do it now! SPSS also
incorporates some procedures [into the #-test (e.g. Levene’s test, see section 5.6.1, can be
done at the same time as the #-test). Let’s now look at each of the two z-tests in turn.

If we stay with our repeated-measures data for the time being we can look at the dependent
t-test, or paired-samples -test. The dependent #-test is easy to calculate. In effect, we use a
numeric version of equation (3.1):
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Equation (9.2) compares the mean difference between our samples (D) to the difference
that we would expect to find between population means (i), and then takes into account
the standard error of the differences (sD/\/N). If the null hypothesis is true, then we expect
there to be no difference between the population means (hence p, = 0).

Sampling distributions and the standard error ®

In equation (9.1) T referred to the lower half of the equation as the standard error of differ-

ences. The standard error was introduced in section 2.5.1 and is simply the standard deviation

of the sampling distribution. Have a look badk at this section now to refresh your memory

about sampling distributions and the standard error. Sampling distributions have several prop-

erties that are important. For one thing, if the population is normally distributed then so is the -
sampling distribution; in fact, if the samples contain more than about 50 scores the sampling h 7 Vo
distribution should be normally distributed. The mean of the sampling distribution is equal to i _
t@é@ of all possible sample means should be the same as (e /’J _
the ponulation mean. This propemmhe A7 @ 1 hiovm /
population then you would expect its mean to be equal to that of the population. However, ) :
sometimes samples are unrepresentative and |their means differ from the population mean. e g/ 4//

On average, though, a sample mean will be vepy close to the population mean and only rarely o 4 e
will the sample mean be substantially different from that of the population. A final property _ oL Hvon
of a sampling distribution is that its standard|deviation is equal to the standard deviation of /¢ ¥ Y
[ the population divided by the square root of the number of observations in the sample. As I

mentioned before, this standard deviation is Known as the standard error.
We can extend this idea to look at the differences between sample means. If you were to W
; take several pairs of samples from a population and calculate their means, thén could . °~
: alww@@mﬁ e sample &1 Savylec
means will be very similar to the population mian: as such, most samples will have very similar 77424
means. Therefore, most of the time the differénce between sample means from the same pop-
ulation will be'mmml{m or both of the samples could
5 hef¥e a mean very deviant from the population mean and so it is possible to obtain large differ:
ences between sample means by charice alone. However, this would happen less frequently.
In fact, if you plotted these differences between sample means as a histogram, you would
again have a sampling distribution with all of the properties previously described . The

standard deviation of this sampling distribution is called the standard error of differences.
A siall standard error tells us that most pairs of samples from a population will have very

] similar means (i.e. the difference between sample means should normally be very small). A
) large standard error tells us that sample means can deviate quite a lot from the population
] mean and so differences between pairs of samples can be quite large by chance alone.
d f
) The dependent t-test equation explained ©®
In an experiment, a person’s score in condition 1 will be different to their score in condi-
tion 2, and this difference could be very large or very small. If we calculate the differences
between each person’s score in each condition and add up these differences we would get the
t total amount of difference. If we then divide this total by the number of participants we get
a

the average difference (thus how much, on average, a person’s score differed in condition 1
i compared to condition 2). This average difference is D in equation (9.2) and it is an indicator




How does the
t-test actually work?
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of the systematic yariation in the data (i.e. it represents the experimental
effect). We need to compare this systematic variation against some kind of
measure of the ‘systematic variation that we could naturally expect to find’.
In Chapter 2 we saw that the standard deviation was a measure of the ‘i’
of the mean to the observed data (i.e. it measures the error in the model
when the model is the mean), but it does not measure the fit of the mean
to the population. To do this we need the standard error (see the previous
section, where we revised this idea).

The standard error is a measure of the error in the mean as a model of
the population. In this context, we know that if we had taken two random
samples from a population (and not done anything to these samples) then
the means could be different just by chance. The standard error tells us by how much these
samples could differ. A small standard error means that sample means should be quite simi-
lar, so a big difference between two sample means is unlikely. In contrast, a large standard
error tells us that big differences betveen the means of two random samples are more likely.
Therefore it makes sense to compare the average difference between means against the stand-
ard error of these differences. This gives us a test statistic that, as 've said numerous times
in previous chapters, represents model/error. Our model is the average difference between
condition means, and we divide by the standard error which represents the error associated
with this model (i.e. how similar two random samples are likely to be from this population).

To clarify, imagine that an alien came down and cloned me millions of times. This
population is known as Landy of the Andys (this would be possibly the most dreary and
strangely terrifying place 1 could imagine). Imagine the aliens were interested in spider
phobia in this population (because I am petrified of spiders). Everyone in this population
(my clones) will be the same as me, and would behave in an identical way to me. If you
took two samples from this population and measured their spider fear, then the means of
these samples would be the same|(we are clones), so the difference between sample means
would be zero. Also, because we are all identical, then all samples from the population will
be perfect reflections of the population (the standard error would be zero also). Therefore,
if we were to get two samples that differed even very slightly then this would be very
unlikely indeed (because our population is cull of cloned Andys). Therefore, a difference
between samples must mean that they have come from different populations. Of course, in
reality we don’t have samples that perfectly reflect the population, but the standard error
gives an idea of how well samples reflect the population from which they came.

Therefore, by dividing by the|standard error we are doing two things: (1) standardizing
the average difference between donditions (this just means that we can compare values of £
without having to worry about the scale of measurement used to measure the outcome vari-
able); and (2) contrasting the difference between imeans that we have against the difference
that we could expect to get based on how well the samples represent the populations from
which they came. If the standard error is large, then large differences between samples are
more common (because the distribution of differences is more spread out). Conversely, if the
standard error is small, then large differences between sample means are UNCOMMmON (because
the distribution is very narrow and centred around zero). Therefore, if the average difference
between our samples is large, and the standard error of differences is small, then we can be
confident that the difference we observed in our sample is not a chance result. If the differ-
ence is not a chance result then it must have been caused by the experimental manipulation.

In a perfect world, we could calculate the standard error by taking all possible pairs
of samples from a population,|calculating the differences between their means, and then
working out the standard deviation of these differences. However, in reality this is impos-
sible. Therefore, we estimate the standard error from the standard deviation of differences
obtained within the sample (s;) and the sample size (N). Think back to section 2.5.1 where
we saw that the standard error|is simply the standard deviation divided by the square root
of the sample size; likewise the standard error of differences (o5) is simply the standard
deviation of differences divideh by the square root of the sample size:
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If the standard error of differences is a measure of the unsystematic variation within the data,
and the sum of difference scores represents the systematic variation, then it should be clear that
the ¢-statistic is simply the ratio of the systematic variation in the experiment to the unsystematic
variation. If the experimental manipulation creates any kind of effect, then we would expect
the systematic variation to be much greater than the unsystematic variation (so at the very least,
¢ should be greater than 1). If the experlmental manipulation is unsuccessful then we might

_expect the variation caused by individual differences to be much greater than that caused by the

experiment (so ¢ will be less than 1). We can compare the obtained value of ¢ against the maxi-
mum value we would expect to get by chance alone in a -distribution with the same degrees of
freedom (these values can be found in the Appendix); if the value we obtain exceeds this critical
value we can be confident that this reflects an effect of our independent variable.

The dependent f~test and the assumption
of normality @

We talked about the assumption of normality in Chapter 5 and discovered that parametric
tests (like the dependent ¢-test) assume that the sampling distribution is normal. This should
be true in large samples, but in small samples people often check the normality of their data
because if the data themselves are normal then the sampling distribution is likley to be also.
With the dependent i-test we analyse the dzﬁerences between scores because we’re inter-
ested in the sampling distribution of these differences (not the raw data). Therefore, if you
want to test for normality before a dependent -test then what you should do is compute
the differences between scores, and then check if this newvariable is normally distributed
(or use a big sample and not worry about normality!). It is possible to have two measures
that are highly non-normal that produce beautifully distributed differences!

SELF-TEST Using the spiderRM.sav data, compute
the differences between the picture and real condition
and check the assumption of normality for these
differences.

Dependent t-fests using SPSS @

Using our spider data (spiderRM.sav), we have 12 spider-phobes who were exposed to a pic-
ture of a spider (picture) and on a separate gccasion a real live tarantula (real). Their anxiety
was measured in each condition (half of the participants were exposed to the picture before
the real spider while the other half were exposed to the real spider first). I have already
described how the data are arranged, and sg we can move straight on to doing the test itself.
Fu:st we need to-access the main dialog Hox by selecting Fzes Compare Means »

w, Paired-Samples T Test... (Figure 9.8). Once the dialog box is activated, you need to select pairs of
variables to be analysed. In this case we have only one pair (Real vs. Picture). To select a pair
you should click on the first variable that you want to select (in this case Picture), then hold

down the Ctrl key on the keyboard and select the second (in this case Real). To transfer these
[
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two variables to the box labelled |Paired Variables click on .. (You can also select each vari-
able individually and transfer it by clicking on *., but the method using the C#rl key to select
both variables is quicker.) If you want to carry out several ¢-tests then you can select another
pair of variables, transfer them to|the variables list, then select another pair and so on. In this

case, we want only one test. If you click on  osens.. , then another dialog box appears that

gives you the chance to change the width of the confidence interval that is calculated. The
default setting is for a 95% confidence interval and this is fine; however, if you want to be
stricter about your analysis you could choose a 99% confidence interval but you run a higher
risk of failing to detect a genuine effect (a Type II error). You can also select how to deal with
missing values (see SPSS Tip 6.1)| To run the analysis click on _ok_.

|

Qutput from the dependent f-fest ®

The resulting output produces three tables. SPSS Output 9.1 shows a table of summary
statistics for the two experimental conditions. For each condition we are told the mean, the
number of participants (N) and|the standard deviation of the sample. In the final column
we are told the standard error (see section 9.4.1), which is the sample standard deviation
divided by the square root of the sample size (SE = sAIN), so for the picture condition SE =
9.2932M12 = 9.2932/3.4641 = 2.68.

SPSS Output 9.1 also shows the Pearson correlation between the two conditions. When
repeated measures are used it is possible that the experimental conditions will correlate
(because the data in each condition come from the same people and so there could be some
constancy in their responses). SPSS provides the value of Pearson’s 7 and the two-tailed
significance value (see Chapter 6). For these data the experimental conditions yield a fairly
large correlation coefficient (r = .545) but are not significantly correlated because p > .05.
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Paired Samples Statistics SPSS DUTPUT 8.1
[ Std. Error
hean N Stdl. Deviation hean
Pair1  Picture of Spider 40.00 12 9,293 2.583
Real Spider 47.00 | | 12 11.029 3.184
} Paired Samples Correlations
N Caorrelation Sig.
Pair1  Picture of Spider & Real | : =
Spider ; 12 543 067
[

SPSS Output 9.2 shows the most important of the tables: the one that tells us whether the
difference between the means of the two conditions was large enough to 7ot be a chance result.
First, the table tells us the mean difference between scores (this value, i.e. D in equation (9.2), is
the difference between the mean scores of each condition: 40 — 47 =—7). The table also reports
' the standard deviation of the differences between the means and more important the standard
error of the differences between participants’ [scores in each condition (see section 9.4.1). The
test statistic, 2, is calculated by dividing the mean of differences by the standard error of differ-
ences (see equation (9.2): ¢ = —~7/2.8311 = —2/47). The size of ¢ is compared against known val-
ues based on the degrees of freedom. When the same participants have been used, the degrees of
freedom are simply the sample size minus 1 (df = N—1 = 11). SPSS uses the degrees of freedom
to calculate the exact probability that a value of  as big as the one obtained could occur if the
aull hypothesm were true (i.e. there was no difference between these means). This probability
value is in the column labelled Sig. By default, SPSS provides only the two-tailed probability,
which is the probability when no prediction was made about the direction of group differences.
If a specific prediction was made (e.g. we might predict that anxiety will be higher when a real
spider is used) then the one-tailed probability should be reported and this value is obtained by
dividing the two-tailed probability by 2 (see $PSS Tip 9.1). The two-tailed probability for the
| spider data is very low (p =.031) and in fact|it tells us that there is only a 3.1% chance that a
value of ¢ this big could happen if the null hypothesis were true. We saw in Chapter 2 that we
generally accept a p < .05 as statistically meaningful; therefore, this # is significant because .031
is smaller than .05. The fact that the #-value is|a negative number tells us that the first condition
(the picture condition) had a smaller mean than the second (the real condition) and so the real
spider led to greater anxiety than the picture. Therefore, we can conclude that exposure to a
real spider caused significantly more reported anxiety in splder -phobes than exposure to a pic-
ture, £(11) = —2.47, p < .05. This result was predicted by the error bar chart in Figure 9.7.

Paired Samples Test

SPSS OUTPUT 8.2

Paired {Diﬂ’erences

95% Canfidence Intervat
ofthe Difference

S}d. Error Slg. (2-
|Mean Lower Upper i dr tailed)
Palr1  Picture of Spider - |

Real Spider -7.000 9.807 | 283 -13.231 -768 | -2473 " 031

Mean Std. Deviation

Finally, this output provides a 95% confidence interval for the mean difference. Imagine
we took 100 samples from a population of difference scores and calculated their means
(D) and a confidence interval for that mean. In 95 of those samples the constructed confi-
dence intervals contains the true value of the mean difference. The confidence interval tells
i us the boundaries within which the true mean difference is likely to lie.* So, assuming this

sample’s confidence interval is one of the 95 out of 100 that contains the population value,
i

* We saw in section 2.5.2 that these intervals represent the value of two (well, 1.96 to be precise) standard er-
rors either side of the mean of the sampling distribution. For these data, in which the mean difference was -7
and the standard error was 2.8311, these limits will be =7 + (1.96 x 2.8311). However, because we’re using the
t-distribution, not the normal distribution, we use the| critical value of # to compute the confidence intervals. This
value is (with df = 11 as in this example) 2.201 (two- Jcaﬂed which gives us —7 + (2.201 x 2.8311).
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One- an.d two-tailed significance in SPSS O
] _

get a bit upset by the fact that SPES produces only the two-tailed significance much of the time
ed by why there isn't an option thejm can be selected to produce the one-tailed significance. The -

answer is simple: there is no need for an option because the one-tailed probability can be asgertained by divid-
ing the two-tailed significance value by 2. For ex%imple, if the two-tailed probability is .107, then the one-tailed

probability is .1

07/2 = .054.

" we can say that the true mean difference lies between —13.23 and -0.77. The importance

of this interval is that it does not contain zero (i.e. both limits are negative) because this
tells us that the true value of the mean difference is unlikely to be zero. Crucially, if we
were to compare pairs of random samples from a population we would expect most of the
differences between sample means to be zero. This interval tells us that, based on our two
samples, the true value of the difference between means is unlikely to be zero. Therefore,
we can be confident that our two samples do not represent random samples from the
same population. Instead they represent samples from different populations induced by the
experimental manipulation. |

Calculating the effect size @

Even though our #-statistic is statistically significant, this doesn’t mean our effect is important
in practical terms. To discover whether the effect is substantive we need to use what we know
about effect sizes (see section 2,6.4). 'm going to stick with the effect size r because it’s widely
understood, frequently used, and yes, I'll admitit, I actually like it! Converting a ¢-value into
an r-value is actually really easy; we can use the following equation (e.g. Rosenthal, 1991;
Rosnow & Rosenthal, 2005).3 '

72
2 +df

=

We know the value of # and ‘tHe df from the SPSS output and so we can compute 7 as follows:

—2.473% 6.116

24732111 g o

If you think back to our ben¢hmarks for effect sizes this represents a very large effect (it is
above .5, the threshold for a large effect). Therefore, as well as being statistically signifi-
cant, this effect is large and so represents a substantive finding.

5 Actually, this will overestimate the|effect size because of the correlation between the two conditions. This is quite
2 technical issue and P'm trying to keep things simple here, but bear this in mind and if yow're interested read
Dunlap, Cortina, Vaslow, and Burke (1996). '

SRS e et el
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Reporting the dependent t-1est @

There is a fairly standard way to report any test statistic: you usually state the finding
b to which the test relates and then report the test statistic, its degrees of freedom and the
; probability value of that test statistic. There has also been a recent move (by the American
Psychological Association among others) to recommend that an estimate of the effect size
i is routinely reported. Although effect sizes are still rather sporadically used, I want to get
you into good habits so we’ll start thinking about effect sizes now. In this example the SPSS
| output tells us that the value of £ was —2.47, that the degrees of freedom on which this was
; based was 11, and that it was significant at p = .031. We can also see the means for each

group. We could write this as:

: v On average, participants experienced significantly greater anxiety to real spiders
: (M = 47.00, SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68), t(11) =
=247, p < .05, r=.60.

Note how we’ve reported the means in each group (and standard errors) in the standard
format. For the test statistic, note that we’ve used an italic ¢ to denote the fact that we’ve
calculated a t-statistic, then in brackets we've put the degrees of freedom and then stated
the value of the test.statistic. The probability can be expressed in several ways: often peo-
ple report things to a standard level of significance (such as .05) as I have done here, but
sometimes people will report the exact significance. Finally, note that Pve reported the
effect size at the end — you won’t always see this in published papers but that’s no excuse
for you not to report it! ]
Try to avoid writing vague, unsubstantiated things like this:

\

; % People were more scared of real spide?rs (t =-2.47).

More scared than what? Where are the df? [Was the result statistically significant? Was the
effect important (what was the effect size)?

e The dependent t-test compares two means, when those means have come from the same entities; for example, if you have
used the same participants in each of two expprimental conditions.

o Look at the column labelled Sig. If the value is léss than .05 then the means of the twa conditions are significantly different.

@ Look at the values of the means to tell you how the conditions differ.

e SPSS provides only the two-tailed signiﬁcanc‘g value; if you want the one-tailed significance just divide the value by 2.

o Report the ¢-statistic, the degrees of freedoni and the significance value. Also report the means and their corresponding
standard errors (or draw an error bar chart). |

s If you're feeling brave, calculate and report thfz gffect size too!

| |
i
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9.5. The independent -fest®

The independent t-test equation explained @

The independent t-test is used in situations in which there are two experimental condi-
tions and different participants Have been used in each condition. There are two different
equations that can be used to calculate the ¢-statistic depending on whether the samples

t-statistic by using a numerical version of equation (9.1); in other words, we are comparing
the model or effect against the error. With the dependent #-test we could look at differ-
ences between pairs of scores, because the scores came from the same participants and so
individual differences between conditions were eliminated. Hence, the difference in scores
should reflect only the effect of the experimental manipulation. Now, when different par-
ticipants participate in different conditions then pairs of scores will differ not just because
of the experimental manipulation, but also because of other sources of variance (such as
individual differences between participants’ motivation, IQ, etc.). If we cannot investigate
differences between conditions on a per participant basis (by comparing pairs of scores as
we did for the dependent t-test) then we must make comparisons on a per condition basis
(by looking at the overall effect/in a condition — see equation (9.3)):

_ &%) - m)
estimate of the standard error

(9.3)

Instead of looking at differences between pairs of scores, we now look at differences
between the overall means of the two samples and compare them to the differences we
would expect to get between the means of the two populations from which the samples
come. If the null hypothesis is true then the samples have been drawn from the same popu-
Jation. Therefore, under the null hypothesis u, = i, and therefore ,— u, = 0. Therefore,
under the null hypothesis the equation becomes:

o X, —X>
estimate of the standard error

(9.4)

|
In the dependent ¢-test we divided the mean difference between pairs of scores by the
standard error of these differences. For the independent #-test we are looking at differences
between groups and so we need to divide by the standard deviation of differences between
groups. We can still apply the logic of sampling distributions to this situation. Now, imagine
we took several pairs of samples — each pair containing one sample from the two different
populations — and compared the means of these samples. From what we have learnt about
sampling distributions, we know that the majority of samples from a population will have
fairly similar means. Therefore, if we took several pairs of samples (from different popula-
tions), the differences between| the sample means will be similar across pairs. However, often
the difference between a paif of sample means will deviate by a small amount and very
occasionally it will deviate by 2 large amount. If we could plot a sampling distribution of the
differences between every pait of sample means that could be taken from two populations,
then we would find that it had a normal distribution with a mean equal to the difference
between population means (), — i,). The sampling distribution would tell us by how much
we can expect the means of two (or more) samples to differ. As before, the standard deviation

of the sampling distribution (the standard error) tells us how variable the differences between
i

contain an equal number of pepple. As with the dependent #-test we can calculate the -

o slalff
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sample means are by chance alone. If the |standard deviation is high then large differences
between sample means can occur by chance; if it is small then only small differences between
sample means are expected. It, therefore, makes sense that we use the standard error of the
sampling distribution to assess whether the difference between two sample means is statisti-
cally meaningful or simply a chance result. Specifically, we divide the difference between
sample means by the standard deviation of the sampling distribution.

So, how do we obtain the standard deviation of the sampling distribution of differences

di- between sample means? Well, we use the variance sum law, which states that the variance of
-nt i a difference between two independent variables is equal to the sum of their variances (see,
les f for example, Howell, 2006). This statement means that the variance of the sampling distri-
he i bution is equal to the sum of the variances of the two populations from which the samples
ng ? were taken. We saw earlier that the standard error is the standard deviation of the sampling
er- | distribution of a population. We can use|the sample standard deviations to calculate the
s0 ‘ standard error of each population’s sampling distribution:

res '

% . . y . S1

Gk SE of sampling distribution of population 1 =

15€ : v/ Nip

as ‘
| S2
ite SE of sampling distribution of population 2 = —=
as ! /N,

Sis ;

Therefore, remembering that the variance is simply the standard deviation squared, we can
calculate the variance of each sampling distribution: -

3) 2 2

: . . - . | . S1 ST
variance of sampling distribution of population 1= =
VN1 Ny

“es

e . v o ; | g 52 S%

les variance of sampling distribution of population 2 = Wiy =30

2 2

- -

S The variance sum law means that to find|the variance of the sampling distribution of dif-
ferences we merely add together the variances of the sampling distributions of the two
populations: ' ‘ '

. 2 2

4 . N | 2 3

) variance of sampling distribution of differences= —L + —2
Ni N»

ke To find out the standard error of the sampling distribution of differences we merely take

o5 the square root of the variance (because variance is the standard deviation squared):

en '

ne , | 2

SE of the sampling distribution of differences = 4/ [ —%- + —2

nt Ny N,

ut ) o
Therefore, equation (9.4) becomes:

ve q

a- — — |

N = Xl — Xz .

ry ! (9.5)

|

he i

s, 5

ce Equation (9.5) is true only when the samplle sizes are equal. Often in the social sciences it is

. not possible to collect samples of equal size (because, for example, people may not complete

il an experiment). When we want to compare two groups that contain different numbers of

il participants then equation (9.5) is not appr‘iopriate. Instead the pooled variance estimate ¢-test
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is used which takes account of the difference in sample size by weighting the variance of each
sample. We saw in Chapter 1 that|large samples are better than small ones because they more
closely approximate the population; therefore, we weight the variance by the size of sample
on which it’s based (we actually weight by the number of degrees of freedom, which is the
sample size minus 1). Therefore, the pooled variance estimate is:

2 (m=D3+m-1)
r e )

This is simply a weighted average in which each variance is multiplied (weighted) by its degrees
of freedom, and then we divide by the sum of weights (or sum of the two degrees of free-:
dom). The resulting weighted average variance is then just replaced in the z-test equation:

X1 —X»

=

1
T

3

As with the dependent #-test we can compare the obtained value of  against the maximum
value we would expect to get by ¢chance alone in a #-distribution with the same degrees of free-
dom (these values can be found in the Appendix); if the value we obtain exceeds this critical
value we can be confident that this reflects an effect of our independent variable. One thing that
should be apparent from the equation for # is that to compute it you don’t actually need any
data! All you need are the means, standard deviations and sample sizes (see SPSS Tip 9.2).

The derivation of the #-statistic is merely to provide a conceptual grasp of what we are
doing when we carry out a t-test on SPSS. Therefore, if you don’t know what on earth 'm
babbling on about then don’t worry about it (just spare a thought for my cat: he has to listen
to this rubbish all the time!) because SPSS knows how to do it and that’s all that matters!

Computing { from meaﬁs, SDS and Ns ©® .

Using syntax, you can compute a z‘}test in SPSS from only the twa group means, the two group stan-
dard deviations and the two group sizes. Open a data editor window and set up six new variables: x1
(mean of group 1), x2 (mean of gr@up 2), sd1 (standard deviation of group 1), sd2 (standard devia-
tion of group 2), n1 (sample size of group 1) and n2 (sample size of group 2). Type the values of each
of these In the first row of the data gditor. Open a syntax window and type the following:

COMPUTE df = n1+n2-2. ]

COMPUTE poolvar = (((n1-1)*(sd1 ** 2))+((n2-1)*(sd2 ** 2)))/df.

COMPUTE t = (x1-x2)/sqrt(poolvar*((1/n1) + (1/n2))).

COMPUTE sig = 2*(1-(CDRT(abs(1),df))) .

Variable labels sig ‘Significance (2-tailed)'.

EXECUTE. !

The first line computes the degrees of freedom, the second computes the pooled variance, sZ the third com-
putes t and the fourth its two-tailed significance. ;AII of these values will be created in & new column in the data
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editor. The line beginning ‘Variable labels’ simpl%y labels the significance variable so that we know that it is two-
tailed. If you want to display the results in the SRSS Viewer you could type:

SUMMARIZE
JTABLES= x1x2 df t sig

JFORMAT=VALIDLIST NOCASENUM TOTAL LIM[T=100

[TITLE="T-test’
/MISSING=VARIABLE
JCELLS=NONE.

These commands will produce a table of the variables x1, x2, df, t and sig so you'll see the means of the two
groups, the degrees of freedom, the value of t and its two-tailed significance.

You can run lots of t-tests at the same time py putting different values for the means, SDs and sample sizes
in different rows. If you do this, though, | suggest having a string variable called Outcome in the file in which you
type what was being measured (or some other information so that you can identify to what the t-test relates).

| have put these commands in a syntax filg called Independent t from means.sps. My file is actually a bit
more complicated because it calculates an eﬁéot size measure (Cohen's d). For an example of how to use this

file see Labcoat Leni's Real Research 9.1,

LABCOAT LENV'S
REAL RESEARCH 8.1

You don’t have to be
mad here, but it helps ®

In the UK you often see the ‘humorous’ slogan “You
don’t have to be mad to work here, but it helps’ stuck up
in work places. Well, Board and Fritzon (2005) téok this
a step further by measuring whether 39 senior business
managers and chief executives from leading UK compa-
nies were mad (well, had personality disorders, PD;’S). They
gave thermn The Minnesota Multiphasic Personality Imventory
Scales for DSM Il Personality Disorders (MMPI-PD), which
is a well-validated measure of 11 personality disorders:
Histrionic, Narcissistic, Antisocial, Borderline, Dependent,

‘
!
;
|

Compulsive, Passive-aggressive, Paranoid, Schizotypal,

Schizoid and Avaidant. They needed a comparison group,

and what better one to choose than 317 legally classi-

fied psychopaths at Broadmoor Hospital (a famous high-

security psychiatric hospital in the UK).
The authors report the means and SDs for these two

groups in Table 2 of their paper. Using these values and the

syntax file Independent t from means.sps we can runt-tests
on these means. The data from Board and Fritzon's Table 2
are in the file Board.and Fritzon 2005.sav. Use this file and
the syntax file to run t-tests to see whether managers score
" higher on personality disorder questionnaires
than legally classified psychopaths. Report
these results. What do you conclude?

Answers are in the additional material
on the companion website (or look at Table
2 in the original article).

The independent #-test using SPSS @

I have probably bored most of you to the point of wanting to eat your own legs by now.
Equations are boring and that is why SPSS |was invented to help us minimize our contact
with them. Using our spider data again (spiderBG.sav), we have 12 spider-phobes who

|
|
|
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were exposed to a picture of a spider and 12 different spider-phobes who were exposed
to a real-life tarantula (the groups are coded using the variable group). Their anxiety was
measured in each condition (anxiety). I have already described how the data are arranged
(see section 9.2), so we can move straight on to doing the test itself. First, we need to access
the main dialog box by selecting asiyze; Compare Means ¥ & Indepencent-Samples T Test.. (see
Figure 9.9). Once the dialog box|is activated, select the dependent variable from the list
(click on anxiety) and transfer it th the box labelled Test Variable(s) by clicking on »,. If you
Want to carry out -tests on several dependent variables then you can select other depend-
ent variables and transfer them tq the variables list. However, there are good reasons why
it is not a good idea to carry out lots of tests (see Chapter 10).

Next, we need to select an inﬁependent variable (the grouping variable). In this case,
we need to select group and therl transfer it to the box labelled Grouping Variable. When
your grouping variable has been| selected the peiecrows.. . button will become active and
you should click on it to activate the Define Groups dialog box. SPSS needs to know what
numeric codes you assigned to ypur two groups, and there is a space for you to type the
codes. In this example, we coded our picture group as 0 and our real group as 1, and so
these are the codes that we type| Alternatively you can specify a Cut point in which case
SPSS will assign all cases greater than or equal to that value to one group and all the values
below the cut point to the second group. This facility is useful if you are testing different
groups of participants based on|something like a median split (see Jane Superbrain Box ‘
9.1) — you would simply type the median value in the box labelled Cut point. When you
have defined the groups, click on cominue to return to the main dialog box. If you click on

osions.. . then another dialog box appears that gives you the same options as for the depend-
ent z-test. To run the analysis click on 0K . '

Fl.GURE 8.8 @ Independent-Samples T Test ;
Dialog boxes ‘ ;
forthe | Test Varisble(s): i
independent - L < anxiety [Anxiety] ‘

samples t-test

| Grouping Yeariable ‘
[ '« i Eroup(U 1

. Define Groups...

L

Inde:pendent'Sarr:pj)’iéélif:géf;igpﬁ.u :

@ Define Groups

(3 Use specified values . Confidence Interval: o

Group 1:

D [ Missing Values _

1 | J

Group 2 @ Exclude cases analysis by analysis i
r Cancel

O cut poirt:

(O Exclude cases listwise ' £

( Cortinue 3

]F_*‘ff J L E_Continue j( Cgl_'\_g:eln;'_”.
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JANE SUPERBRAIN 9.1 |
Are median splits the devil's work? @

Often in research papers you see that people have analy-
sed their data using a ‘median split'. In our spider phobia
example, this means that you measure scores on a spi-
der phobia questionnaire and calculate the median. You
then classify anyone with a score above the median as a .
‘phobic’, and those below the median as ‘non-phabic’. In
doing this you ‘dichotomize’ a continuous variable. This

practice is quite common, but is it sensible?

MacCallumn, Zhang, Preacher, and Rucker |(2002)
wrote a splendid paper pointing out various problems on
turning a perfectly decent continuous variable into a cat-

egorical variable:

1 Imagine there are four people: Peter, Birgit, tip and
Kiki. We measure how scared of spiders they are as |
a percentage and get Jip (100%), Kiki (60%), Peter
(40%) and Birgit (0%). If we split these four people at

the median (50%) then we're saying that Jip and Kiki
are the same (they get a score of 1 = phobic) and
Peter and Birgit are the same (they both get a score
of 0 = not phobic). In reality, Kiki and Peter are the
most similar of the four people, but they have been
put in different groups. So, median splits change the
original information quite dramatically (Peter and Kiki
are originally very similar but become very different
after the split, Jip and Kiki are relatively dissimilar
originally but become identical after the split).

N

Effect sizes get smaller: if you correlate two con-
tinuous variables then the effect size will be larger
than if you correlate the same variables after one
of them has been dichotomized. Effect sizes also
get smaller in ANOVA and regression.

3 There is an increased chance of finding spurious
effects.

So, if your supervisor has just told you to do a median
split, have a good think about whether it is the right thing to
do (and read MacCallumn et al.'s paper). One of the rare situa-
tions in which dichotomizing a continuous variable is justified,
according to MacCallum et al., is when there is a clear theo-
refical rationale for distinct categories of people based on a
meaningful break point (i.e. not the median); for example,

phobic versus not phobic based on diagnosis by a trained
clinician would be a legitimate dichotomization of anxiety.

Output from the independent i-test @

The output from the independent ¢-test contains only two tables. The first table (SPSS Output
9.3) provides summary statistics for the two|experimental conditions. From this table, we
can see that both groups had 12 participants| (column labelled N). The group who saw the
picture of the spider had a mean anxiety of 40, with a standard deviation of 9.29. What’s
more, the standard error of that group (the standard deviation of the sampling distribution)
is 2.68 (SE = 9.293N12 = 9.293/3.464 = 2.58). In addition, the table tells us that the aver-
age anxiety level in participants who were shown a real spider was 47, with a standard devia-
tion of 11.03 and a standard error of 3.18 (SE = 11.02912 = 11.029/3.464 = 3.18).

Group Statistics

SPSS QUTPUT 8.3

Spider or [ Std., Errar

Pictire? N ilean - Std. Deviation Mean
Amdety  Pieturs 12 40.00 9.293 2.633

Real Spider 12 47.00 11.028 3.184

i
The second table of output (SPSS Output 9.4) contains the main test statistics. The
first thing to notice is that there are two rows containing values for the test statistics: one
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row is labelled Equal variances assumed, while the other is labelled Equal variances not
assumed. In Chapter 5, we saw|that parametric tests assume that the variances in experi-
mental groups are roughly equal. Well, in reality there are adjustments that can be made
in situations in which the variances are not equal. The rows of the table relate to whether
or not this assumption has been broken. How do we know whether this assumption has
been broken?

We saw in section 5.6.1 that|we can use Levene’s test to see whether variances are dif-
ferent in different groups, and §PSS produces this test for us. Remember that Levene’s test
is similar to a i-test in that it tests the hypothesis that the variances in the two groups are
equal (i.e. the difference between the variances is zero). Therefore, if Levene’s test is signif-
icant atp £.05, we can gain confidence in the hypothesis that the variances are significantly
different and that the assumption of homogeneity of variances has been violated. If, how-
ever, Levene’s test is non-significant (i.e. p > .05) then we do not have sufficient evidence
to reject the null hypothesis that the difference between the variances is zero — in other
words, we can assume that the variances are roughly equal and the assumption is tenable.
For these data, Levene’s test is| non-significant (because p = .386, which is greater than
.05) and so we should read the|test statistics in the row labelled Equal variances assumed.
Had Levene’s test been significant, then we would have read the test statistics from the row
labelled Equal variances not assuwmed.

Independent Samples Test

Levgne‘slj’es_i for ‘
quality of
Varian‘g’es | +iest for Equalily of Means
85% Confidence
[ Interval of the
Dirference
|
| Mean Std. Error
F Sig. | f df Slg. (2-tailed) Difierence. Diflerence Lower Upper
Anxiely Equalvariances 15
assumed 782 | 388|| -1.681 22 407 -7.000 4453 15634 | 1.634
Equal variances not |
assumed [1 -1.881 | 21.385 107 -7.000 4163 | 15649 | 1.849

Having established that the assumption of homogeneity of variances is met, we can move
on to look at the #-test itself. We are told the mean difference (X1 —X; =40-47=-7)
and the standard error of the sampling distribution of differences, which is calculated using
the lower half of equation (9.5):

(9.292 % 11.032>
el PRyl

s,

T g e | I

N1 N, 7" 12
=+/(7.19+[10.14)
=+17.33 |

=416 |

The ¢-statistic is calculated by dividing the mean difference by the standard error of the sam-
pling distribution of differences|(t = —7/4.16 = —1.68). The value of # is then assessed against
the value of ¢ you might expectto get by chance when you have certain degrees of freedom.
For the independent ¢-test, degrees of freedom are calculated by -adding the two sample sizes
and then subtracting the number of samples (df = N, + N, -2 = 12 + 12 -2 = 22). SPSS
produces the exact significance|value of ¢, and we are interested in whether this value is less
than or greater than .05. In thij case the two-tailed value of p is .107, which is greater than
.05, and so we would have to donclude that there was no significant difference between the
means of these two samples. In|terms of the experiment, we can infer that spider-phobes are
made equally anxious by pictures of spiders as they are by the real thing.

s e
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t Now, we use the two-tailed probability when we have made no specific prediction about
- the direction of our effect (see section 2.6.2). For example, if we were unsure whether a

< real spider would induce more or less anxiety, then we would have to use a two-tailed test.

r However, often in research we can make specific predictions about which group has the

$ highest mean. In this example, it is likely that we would have predicted that a real spider
would induce greater anxiety than a picture and so we predict that the mean of the real group

s would be greater than the mean of the picture|group. In this case, we can use a one-tailed test

t (for more discussion of this issue see section|2.6.2). The one-tailed probability is .107/2 =

e .054 (see SPSS Tip 9.1). The one-tailed probability is still greater than .05 (albeit by a small

- margin) and so we would still have to conclude that spider-phobes’ anxiety when presented

y with a real spider was not significantly different to spider-phobes who were presented with a

- picture of the same spider. This result was predicted by the error bar chart in Figure 9.2.

4 ;

r

0 Calculating the effect size ©@

A '

v |

To discover whether our effect is substantive we can use the same equation as in section
9.4.6 to convert the ¢-statistics into a value of 7. We know the value of # and the df from the
SPSS output and so we can compute 7 as follows:

_ | —1.6812
' P}

i  [2326

| ! =V 24826

) =.34

. I If you think back to our benchmarks for effect/sizes this represents a medium effect (it is around
7) .3, the threshold for a medium effect). Therefore, even though the effect was non-significant, it

. still represented a fairly substantial effect. You|may also notice that the effect has shrunk, which
B may seem slightly odd given that we used exactly the same data (but see section 9.6)!
Reporting the independent t-test @
The rules that I made up, erm, I mean, reported, for the dependent z-test pretty much apply
for the independent #-test. The SPSS output tells us that the value of ¢ was —1.68, that the
number of degrees of freedom on which this was based was 22, and that it was not signifi-
cant at p < .05. We can also see the means |for each group. We could write this as:
5= !
st | v On average, participants experienced greater anxiety to real spiders (M = 47.00,
o. f_ SE = 3.18) than to pictures of spiders (M = 40.00, SE = 2.68). This difference was
es not significant (22) = —1.68, p >.05; however, it did represent a medium-sized effect
N r=.34. ’
ss ;
mn Note how we’ve reported the means in each group (and standard errors) as before. For
1€ - the test statistic everything is much the same as before except that I've had to report that
re p was greater than (>) .05 rather than less|than (<). Finally, note that I've commented on
the effect size at the end. '

[
[
|

|
a
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The independent t-test compares two means, when thase means have come from different groups of entifies; for example,
if you have used different participants in each of two experimental conditions.

Laok at the column labelled Levene’s Test for Equality of Variance. If the Sig. value is less than .05 then the assumption of
homogeneity of variance has been broken and you should look at the row in the table labelled Equal variances not assumed.

I the Sig. value of Levene’s test is higger than .05 then you should look af the row in the table fabelled Equa/ variances
assumed.

Look at the column labelled Sig. If the value is less than .05 then the means of the two groups are signiﬁcénﬂy different.
Look at the values of the means to tell you haw the graups differ.
SPSS provides only the two-tailed significance value; if you want the one-tailed significance just divide the value by 2.

Report the t-statistic, the degrees of freedom and the, significance value. Also report the means and their corresponding
standard errors (or draw an error bar chart).

Calculate and report the effect size. Go on, you can da !

The two examples in this chapte'F are interesting (honestly!) because they illustrate the dif-
ference between data collected using the same participants and data collected using different
participants. The two examples in this chapter use the same scores in each condition. When
analysed as though the data came from the same participants the result was a significant
difference between means, but when analysed as though the data came from different par-
ticipants there was no significant difference between group means. This may seem like a puz-
zling finding - after all the numbpers were identical in both examples. What this illustrates is
the relative power of repeated-measures designs. When the same participants are used across
conditions the unsystematic variance (often called the error variance) is reduced dramatically,
making it easier to detect any systematic variance. It is often assumed that the way in which
you collect data is irrelevant, but I hope to have illustrated that it can make the difference
between detecting a difference and not detecting one. In fact, researchers have carried out
studies using the same participants in experimental conditions, then repeated the study using
different participants in experimental conditions, then used the method of data collection as
an independent variable in the apnalysis. Typically, they have found that the method of data
collection interacts significantly with the results found (see Erlebacher, 1977).

|

A lot of you might think it’s odd that I've chosen to represent the effect size for my z-tests
using 7, the correlation coefficient. In fact you might well be thinking ‘but correlations show
relationships, not differences beglween means’. ] used to think this too until I read a fantastic
paper by Cohen (1968), which r;nade me realize what I’d been missing; the complex, thorny,
weed-infested and large Andy-eating tarantula-inhabited world of statistics suddenly turned
into a beautiful meadow filled with tulips and little bleating lambs all jumping for joy at the
wonder of life. Actually, I'm still fa bumbling fool trying desperately to avoid having the blood
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|
|
|
|

sucked from my flaccid corpse by the tarantulas of statistics, but it was a good paper! What
’m about to say will either make no sense at all, or might help you to appreciate what I've

said in most of the chapters so far: all statistical
more or less elaborate versions of the correlati

In Chapter 7 we saw that the ¢-test was us
of a predictor was equal to zero. The experim

procedures are basically the same, they’re just
n coefficient!

ed to test whether the regression coefficient
ental design for which the independent z-test

is used can be conceptualized as a regression equation (after all, there is one independent
variable (predictor) and one dependent variable (outcome)). If we want to predict our out-
. come, then we can use the general equation that I've mentioned at various points:

outcome; = (model) + error;
?

If we want to use a linear model, then we saw that this general equation becomes equa-
tion (7.2) in which the model is defined by the slope and intercept of a straight line.
Equation (9.6) shows a very similar equation in which A, is the dependent variable (out-
come), b, is the intercept, b, is the weighting of the predictor and G, is the independent
variable (predictor). Now, I've also included the same equation but with some of the letters
replaced with what they represent in the spider experiment (so, A = anxiety, G = group).
When we run an experiment with two conditions, the independent variable has only two
values (group 1 or group 2). There are several ways in which these groups can be coded (in
the spider example we coded group 1 with the value 0 and group 2 with the value 1). This
coding variable is known as a dummy variable and values of this variable represent groups
of entities. We have come across this coding in section 7.11:

) CA;j=bo+01Gi+ &

£ . (9.6)
Anxiety, = bo + bigroup; + &;
1
t
- Using the spider example, we know that the mean anxiety of the picture group was 40,
- and that the group variable is equal to 0 for this condition. Look at what happens when the
s group variable is equal to O (the picture condition): equation (9.6) becomes (if we ignore
s the residual term): ' ‘
I ;
h _XPicture = b() ot (Z)l x O) i
e _
it bO = XPicture
& by =40
18
a [
Therefore, b, (the intercept) is equal to the mean of the picture group (i.e. it is the mean
of the group coded as 0). Now let’s look at|what happens when the group variable is equal
to 1. This condition is the one in which a r;eal spider was used, therefore the mean anxiety
(X,,.) of this condition was 47. Remembering that we have just found out that b, is equal
to the mean of the picture group (X, ) gequatiori (9.6) becomes:
t < ‘
; Xreal=bo+ (b1 x 1) §
ic ; 55Rea\l :YPicmre i bl ;
33 b 1= XReal - —XPicture i
e —47 —40 |
)d = 7




SPSS OUTPUT 9.5
Regression analysis
of between-group

spider data

DISCOVERING STATISTICS USING SPSS

b,, therefore, represents the difference between the group means. As such, we can represent
a two-group experiment as a regression equation in which the coéfficient of the independent
variable (b)) is equal to the difference between group means, and the intercept (b,) is equal
to the mean of the group coded as 0. In regressiomn, the z-test is used to ascertain whether the
regression coefficient (b,) is equal to 0, and when we carry out a -test on grouped data we,
therefore, test whether the difference between group means is equal to 0.

............ | ;

I'go along, run a regression on the data in spiderBG.
say with group as the predictor and anxiety as the
outcome. Group is coded using zeros and ones and
represents the dummy variable described above.

The resulting SPSS outputishould contain the regression summary table shown in SPSS
Output 9.5. The first thing to notice is the value of the constant (b,): its value is 40, the
same as the mean of the base category (the picture group). The second thing to notice is
that the value of the regression coefficient b, is 7, which is the difference between the two
group means (47 — 40 = 7). Finally, the #-statistic, which tests whether b, is significantly
different from zero, is the same as for the independent ¢-test (see SPSS Output 9.4) and so
is the significance value.6

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model | B Std. Error Beta t Sig.
1 (Constant) ;40.000 2.944 13.587 .000
Condition | 7.000 41863 337 1.681 407

a. Dependent Variablef Anxiety

This section has demonstrated that differences. between means can be represented in
terms of linear models and this concept is essential in understanding the following chapters
on the general linear model. |

9.8. What if my data are not normally
distributed? @ |

|
We’ve seen in this chapter tha;t there are adjustments that can be made to the #-test when
the assumption of homogeneity of variance is broken, but what about when you have non-
normally distributed data? The first thing to note is that although a lot of early evidence
suggested that ¢ was accurate Vivhen distributions were skewed, the #-test can be biased when

¢ In fact, the value of the #-statistic is the same but has a positive sign rather than negative. Yow’ll remember from
the discussion of the point-biserial correlation in section 6.5.5 that when you correlate a dichotomous variable
the direction of the correlation coefficient depends entirely upon which cases are assigned to which groups.
Therefore, the direction of the f—stat.éistic here is similarly influenced by which group we select to be the base
category (the category coded as 0).
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CHAPTER 3 COMPARING TWO MEANS

the assumption of normality is not met (Wilcox, 2005). Second, we need to remember that
i’s the shape of the sampling distribution that matters, not the sample data. One option
then is to use a big sample and rely on the central limit theorem (section 2.5.1) which says
that the sampling distribution should be normal when samples are big. You could also try to
correct the distribution using a transformation (but see Jane Superbrain Box 5.1). Another
useful solution is to use one of a group of tests commonly referred to as non-parametric
tests. These tests have fewer assumptions than their parametric counterparts and so are
useful when your data violate the assumptiorls of parametric data described in Chapter S.
Some of these tests are described in Chapter 15. The non-parametric counterpart of the
dependent t-test is called the Wilcoxon signed-rank Test (section 15.4), and the independent
f-test has two non-parametric counterparts (both extremely similar) called the Wilcoxon
rank-sum test and the Mann-Whitney test (se¢tion 15.3). I'd recommend reading these sec-
tions before moving on.

A final option is to use robust methods (see section 5.7.4). There are various robust
ways to test differences between means that involve using trimmed means or a bootstrap.
However, SPSS doesn’t do any of these directly. Should you wish to do these then plugin
for SPSS. Look at the companion website for some demos of how to use the R plugin.

We started this chapter by looking at my relative failures as a human being compared to
Simon Hudson before investigating some problems with the way SPSS produces error
bars for repeated-measures designs. We then had a look at some general conceptual fea-
tures of the #-test, a parametric test that’s used to test differences between two means.
After this general taster, we moved on to lopk specifically at the dependent #-test (used
when your conditions involve the same entities). I explained how it was calculated, how
to do it on SPSS and how to interpret the results. We then discovered much the same
for the independent #-test (used when your|conditions involve different entities). After
this T droned on excitedly about how a situation with two conditions can be conceptual-
ized as a general linear model, by which point those of you who have a life had gone to
the pub for a stiff drink. My excitement about things like general linear models could
explain why Clair Sparks chose Simon Hudson all those years ago. Perhaps she could see
the writing on the wall! Fortunately, I was a|ruthless pragmatist at the age of 10, and the
Clair Sparks episode didn’t seem to concern me unduly; I just set my sights elsewhere
during the obligatory lunchtime game of kiss chase. These games were the last T would
see of women for quite some time ... 1

|

|

Key terms that I've discovered

Dependent t-test Standard error of differences
Grand mean ariance sum law
Independent i-test ;




