
Deconfounding Hypothesis Generation and Evaluation in Bayesian Models
Elizabeth Baraff Bonawitz (liz b@berkeley.edu)

Department of Psychology, 5427 Tolman Hall
Berkeley, CA 94720 USA

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, 3210 Tolman Hall

Berkeley, CA 94720 USA

Abstract

Bayesian models of cognition are typically used to describe
human learning and inference at the computational level, iden-
tifying which hypotheses people should select to explain ob-
served data given a particular set of inductive biases. However,
such an analysis can be consistent with human behavior even
if people are not actually carrying out exact Bayesian infer-
ence. We analyze a simple algorithm by which people might
be approximating Bayesian inference, in which a limited set of
hypotheses are generated and then evaluated using Bayes’ rule.
Our mathematical results indicate that a purely computational-
level analysis of learners using this algorithm would confound
the distinct processes of hypothesis generation and hypothe-
sis evaluation. We use a causal learning experiment to estab-
lish empirically that the processes of generation and evalua-
tion can be distinguished in human learners, demonstrating the
importance of recognizing this distinction when interpreting
Bayesian models.
Keywords: Approximate Bayesian Inference; Hypothesis
Generation; Hypothesis Evaluation; Causal Learning

Introduction
Learning causal relationships, categories, and languages all
require solving challenging inductive problems, using lim-
ited data to assess underdetermined hypotheses. In the last
decade an increasing number of papers have argued that peo-
ple solving inductive problems act in ways that are consis-
tent with optimal Bayesian inference (e.g., Griffiths & Tenen-
baum, 2005; Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Xu & Tenenbaum, 2007). However, most of these
analyses operate at what Marr (1982) termed the computa-
tional level, using Bayesian inference to identify the hypothe-
ses that an ideal learner with particular inductive biases would
choose to explain the observed data. An important question
for this approach is what learners are doing at the algorithmic
level: identifying the psychological processes by which learn-
ers solve inductive problems, and understanding how these
algorithms connect back to the computational level.

Connecting the algorithmic and computational levels in-
volves two challenges: identifying algorithms that can pro-
duce behavior consistent with Bayesian inference, and deter-
mining how the assumptions of a computational-level analy-
sis relate to the components of these algorithms. In this pa-
per, we take up these two challenges for one class of algo-
rithms for inductive inference. The most naı̈ve translation of
Bayesian inference into an algorithm for inductive inference
would be to assume that learners implement Bayes’ rule di-
rectly, having a fixed set of hypotheses and updating a proba-
bility distribution over all of those hypotheses simultaneously

as data are observed. However, the assumption that learners
possess all relevant hypotheses before seeing data is at odds
with numerous findings suggesting that generating appropri-
ate hypotheses can be one of the hardest parts of inductive in-
ference (e.g., Kuhn, 1989; Klahr, Fay, & Dunbar, 1993). We
thus consider the consequences of separating the processes of
generating hypotheses and evaluating those hypotheses, as-
suming that learners perform Bayesian inference with only
the set of hypotheses they generate.

To investigate this, we present a mathematical analysis of
a simple algorithm in which hypothesis generation and evalu-
ation are separated. This produces a surprising result: This
algorithm results in behavior that can still be analyzed in
terms of Bayesian inference, but with a prior that conflates
the plausibility of a hypothesis with the ease of generating
that hypothesis. This result suggests that we should be cau-
tious when interpreting the priors of Bayesian models esti-
mated from behavioral data. Such priors will always reflect
the inductive biases of human learners – those factors that
lead people to select one hypothesis over another when both
are equally consistent with the data. However, human induc-
tive biases can include components that result from processes
at the algorithmic level, such as generating hypotheses.

To demonstrate the importance of taking into account
algorithmic-level factors in interpreting Bayesian models, we
present an experiment exploring the separability of hypoth-
esis generation and evaluation. In the task, we conduct a
causal learning experiment in which we manipulate the hy-
potheses that people generate: by “priming” an appropriate
hypothesis, we increase the probability of people producing
responses consistent with that hypothesis; however, when we
employ a more standard Bayesian reasoning task, providing a
set of hypotheses and asking participants to evaluate them, the
effect of priming goes away. A computational-level analysis
would require postulating different prior distributions in or-
der to explain behavior on these two components of the task.
However, an algorithmic-level analysis shows that this differ-
ence can be explained as the result of the separate effects of
hypothesis generation and evaluation. Finally, we discuss the
implications of this work for future models of human cogni-
tion and for studies of developmental changes.

Analyzing inductive inferences
Bayesian inference indicates how a rational learner should
change his or her beliefs about a set of hypotheses in light



of observed data. Let h be a hypothesis belonging to a set
of hypotheses H . Assume that the learner has different de-
grees of belief in the truth of these hypotheses, and that these
degrees of belief are reflected in a probability distribution
p(h), known as the prior. Then, the degrees of belief the
learner should assign to each hypothesis after observing data
d are given by the posterior probability distribution p(h|d)
obtained by applying Bayes’ rule

p(h|d) = p(d|h)p(h)
∑h′∈H p(d|h′)p(h′)

(1)

where p(d|h) indicates the probability of observing d if h
were true, and is known as the likelihood.

Bayes’ rule provides a computational-level theory of in-
ductive inference, being a component of the optimal solu-
tions to a variety of problems of reasoning under uncer-
tainty (Anderson, 1990; Anderson & Schooler, 1991; Free-
man, 1994; Geisler, Perry, Super, & Gallogly, 2001; Griffiths
& Tenenbaum, 2007; Huber, Shiffrin, Lyle, & Ruys, 2001;
Knill & Richards, 1996; Körding & Wolpert, 2004; Shiffrin
& Steyvers, 1997; Weiss, Simonvelli, & Adelson, 2002). As
an account of inductive inference, the prior p(h) captures the
inductive biases of the learner, indicating which hypothesis a
learner will favor when multiple hypotheses are equally con-
sistent with the observed data (ie. which hypothesis will have
higher probability when multiple hypotheses have equal like-
lihood). This account is attractive in that it can potentially
allow us to identify the inductive biases of human learners,
comparing different Bayesian models to find an appropriate
prior. However, as we show in the remainder of this section,
one should be cautious in interpreting such a prior: Consid-
ering algorithms by which people might be making inductive
inferences shows that multiple processes can be reflected in a
prior estimated from behavioral data.

Inferences with a reduced hypothesis space
As a computational-level theory of inductive inference,
Bayesian models make no commitments about the psycholog-
ical mechanisms by which people actually learn and reason.
The most naı̈ve interpretation of experiments demonstrating
that people produce behavior consistent with Bayesian infer-
ence is that people are actually computing Bayes’ rule in their
heads. There are many reasons why such an algorithm is im-
plausible, not least the requirement that people have all rele-
vant hypotheses available whenever they make an inductive
inference. However, this naı̈ve algorithm provides a good
starting point for exploring the consequences of different psy-
chological processes that could play a role in inductive infer-
ence. Here we explore the consequences of modifying one
aspect of this algorithm: rather than considering all possible
hypotheses in the hypothesis space, considering only a subset
of these hypotheses.

Research in inductive inference and scientific reasoning
has shown that hypothesis generation is a challenging compo-
nent of solving inductive problems (e.g., Kuhn, 1989; Klahr

et al., 1993). Hypotheses can be generated in many differ-
ent ways, including detecting cues from context, recognizing
similarities to previous experiences, and making analogies to
other domains (e.g., Gick & Holyoak, 1980; Gentner, 2002;
Nersessian, 1992; Koslowski, 1996). We will not attempt to
model these processes here, but for our purposes, it is suffi-
cient to assume that the result of all of these processes can be
summarized in a single probability distribution over hypoth-
esis spaces. Using this probability distribution, q(H ∗), we
define the Generate-Evaluate (GE) algorithm for Bayesian
inference with a reduced hypothesis space:

Step 1: Generate Sample a reduced hypothesis space
H ∗ ⊆H from the probability distribution q(H ∗).
Step 2: Evaluate Evaluate the hypotheses in the reduced
hypothesis space H ∗ by applying Bayesian inference, using
a prior distribution on H ∗ proportional to the prior on the full
hypothesis space H . Using p(h) to denote the prior on the
full hypothesis space, as in Equation 1 we obtain the reduced
posterior distribution

p∗(h|d) = p(d|h)p(h)
∑h′∈H ∗ p(d|h′)p(h′)

(2)

for h ∈ H ∗, with all other hypotheses receiving a posterior
probability of zero. Because we are only sampling a subset
of hypotheses, those that are not sampled will never be con-
sidered.

Mathematical analysis

Having defined an algorithm that takes into account the pro-
cess of hypothesis generation, we can now analyze the con-
sequences of using this algorithm. We have two questions of
interest. First, will a learner using the GE algorithm produce
behavior that appears to be consistent with Bayesian infer-
ence? Second, how does the process of hypothesis generation
influence the interpretation of the resulting Bayesian model?
We can answer both of these questions for a special case of
this algorithm by exploiting its relationship to a Monte Carlo
method known as importance sampling.

Monte Carlo methods are a class of algorithms that are
used to approximate probabilistic computations by substitut-
ing samples from a probability distribution for the distribution
itself. For example, if we wanted to perform computations
involving a distribution p(x), we could instead substitute a
set of m values x1, . . . ,xm drawn from p(x), each with weight
1/m. Importance sampling is a Monte Carlo method that
takes this one step further, substituting samples from another
distribution (the surrogate distribution) for samples from the
target distribution (for details, see Neal, 1993). Thus, if we
wanted to perform computations involving p(x), we would
generate a set of samples x1, . . . ,xm from the surrogate distri-
bution q(x). We can get away with doing this if we no longer
assign those samples equal weights. Instead, we give each
sample xi a weight proportional to p(xi)/q(xi). The approxi-



mation to p(x) is thus

p∗(x) =
p(xi)/q(xi)

∑
m
j=1 p(x j)/q(x j)

(3)

for xi ∈ {x1, . . . ,xm}, and zero otherwise. Intuitively, the
weights proportion to p(xi)/q(xi) reflect the “importance” of
each sample. If xi is more probable under q(x) than p(x), it
will be over-represented in the sample, and thus should re-
ceive lower weight. If xi is more probable under p(x) than
q(x), there will be fewer such values than there should be,
and it receives higher weight to compensate. This yields an
asymptotically unbiased approximation to probabilistic com-
putations involving the target distribution, provided certain
constraints are observed (for example q(x) has to be greater
than zero wherever p(x) is greater than zero).

Importance sampling gives us the tools we need to analyze
the GE algorithm. If we assume that the samples are drawn
independently, with q(H ∗) = ∏h∈H ∗ q(h), then the GE algo-
rithm is an importance sampler for the target distribution

p(d|h)p(h)q(h)
∑h∈H p(d|h)p(h)q(h)

(4)

which is the posterior distribution obtained when using a prior
proportional to the product of p(h), the prior on the original
hypothesis space, and q(h), the probability of generating that
hypothesis. It is straightforward to check that this is the case:
if we approximate the distribution given in Equation 4 using
q(h) as the surrogate distribution, then we should generate
a reduced hypothesis space H ∗ by sampling from q(h) and
then assign each sampled hypothesis a weight proportional to
p(d|h)p(h)q(h)/q(h) = p(d|h)p(h). This is exactly the pro-
cedure followed in the GE algorithm, with Equation 2 being
equivalent to Equation 3.1

This analysis answers our two questions about the GE al-
gorithm. First, it shows that a learner using this algorithm will
still produce behavior consistent with Bayesian inference, al-
beit with a modified prior. Second, it indicates how the pro-
cess of hypothesis generation affects behavior: If we estimate
a prior by assuming people are performing Bayesian infer-
ence, that prior will reflect both the a priori plausibility of
hypotheses, p(h), and the probability of generating those hy-
potheses, q(h). One needs not consider q(h) when hypotheses
are provided to the learner to evaluate, and thus no generation
is required. However, the analysis indicates that we should be
careful in interpreting priors estimated using Bayesian mod-
els: if we do not take algorithmic processes into account,
hypothesis generation and evaluation are confounded. This
can be problematic, as processes that change the way people
generate hypotheses, such as priming a particular hypothe-
sis, will influence the distribution q(h) and hence the esti-
mated prior, without influencing the plausibility of a hypoth-
esis p(h). Critically, ignoring the algorithmic level could

1Technically, we also require that H ∗ be a multiset, allowing
multiple instances of the same hypothesis.

therefore lead to counter-intuitive results where we need to
use different priors to explain behavior across contexts where
all that differs is the ease in which hypotheses are generated.

Generation and evaluation in human inferences
Our analysis assumes that the spontaneous generation of hy-
potheses can be separated from the evaluation of a given hy-
pothesis. Thus, if the analysis is correct, generation and eval-
uation should be separable components of human inductive
inference. If a learner does not sample the correct hypoth-
esis, she will never consider it and thus cannot evaluate it;
however, if a hypothesis is given to her (e.g., supplied by an
experimenter), she should be able to evaluate the hypothesis
just as if she generated it herself. We can empirically explore
whether confounding generation and evaluation is a problem
for Bayesian models in practice.

Testing the assumption that generation and evaluation are
separable requires finding a task that allows us to manipulate
the ease of generating different hypotheses. Previous work
suggests that priming of a hypothesis can help people solve
complex reasoning tasks. For example, Schunn and Dunbar
(1996) found that even though participants do not sponta-
neously make an explicit analogy between domains, knowl-
edge from one domain can influence reasoning in the other.
Encouraged by this finding, we predicted that participants
should generate different samples of hypotheses if primed
differently. Priming hypotheses would thus modify the prob-
ability of generating those hypotheses, q(h). However, such
priming should not affect the evaluation of hypotheses pro-
vided for a learner.

In order to test whether the processes of generating and
evaluating hypotheses are separable, we designed a priming
task and a two part causal learning experiment. Prior to the
causal learning experiment, half the participants read a vi-
gnette that primed them to think about the correct causal rule;
the other half of the participants were given a “neutral” vi-
gnette. In the causal learning experiment, participants were
given experience with sets of blue blocks (individuated by a
letter on the block) that sometimes lit up when they inter-
acted with each other. In the first part of the causal learn-
ing experiment, as participants encountered data, they were
asked to make predictions about the result of new block inter-
actions2, and following all evidence, participants were asked
to describe the rule they had discovered that best captured
the pattern of lighting/nonlighting blocks. The actual rule by
which evidence was generated was a “rank order” rule, which
meant that a latent feature of “block strength” dictated which
blocks could light others. The evidence was ambiguous such
that the rule was not immediately obvious, but still potentially
discoverable. In the second part of the causal learning ex-
periment, participants completed a more standard task, tradi-
tionally taken as reflecting the posterior in Bayesian learning
paradigms; participants were given several rules and asked

2The block task was inspired by a similar method used by
Tenenbaum and Niyogi (2003).



to evaluate the degree to which each rule seemed plausible,
given the blocks’ interactions previously demonstrated in the
learning phase.

Note that because the participants are required to discover
the correct causal rule in the first part of the causal learning
experiment, their ability to produce the correct predictions
and the correct description require both steps of the GE algo-
rithm: the subjects must generate a set of possible hypotheses
and evaluate those hypotheses to discover the causal rule that
best captures the observed data. In contrast, the second part
of the causal learning experiment requires only evaluation,
because the set of possible hypotheses is already provided for
the participant. If generation is an important factor in deter-
mining people’s inferences, we should observe a difference
between the two parts of the experiment, and in particular,
a difference in participants’ sensitivity to the prime manip-
ulation. Specifically, if the prime affects only generation, it
should only affect participant responses in the first part of the
experiment: participants given a strong prime should be more
likely to generate the correct hypothesis than participants who
are given a weak prime, but strong prime and weak prime par-
ticipants should be equally likely to correctly rate the expla-
nations provided to them in the second part of the experiment
because this task only requires evaluation and does not re-
quire generation. However, if the prime affects other things,
like the prior, it will affect both parts of the experiment: the
strong prime participants should not only be more likely to
generate the correct causal explanations in the first part of the
experiment, but they should also be more likely than the weak
prime participants to provide a higher rating of the provided,
correct explanation in the second part of the experiment.

Methods

Participants and Design Participants were 40 undergradu-
ates from the University of California, Berkeley who partic-
ipated either for pay or for course credit. Participants were
randomly assigned to either a Strong Prime or Neutral Prime
condition. About half the participants completed an unrelated
experiment prior to completing this experiment.

Stimuli The Strong and Neutral Prime vignettes were given
to participants on a single sheet of paper with instructions.
The target experiment included six small (6cm × 6cm) card-
board cutouts that the participants could manipulate as they
completed the task and a 12 page booklet that included in-
structions, descriptions of the blocks, and sections to write in
answers (see Figure 1).

Procedure The procedure involved a priming stage and a
two part causal learning task, we outline each in turn.

Priming: Participants were first given an “unrelated” sur-
vey, which included a vignette about teachers watching chil-
dren interacting on a playground and learning about rules that
governed which children would win a game. In the Strong
Prime condition the story suggesting that the rule govern-
ing which children would win was related to the childrens

Figure 1: Example page from experiment booklet.

height. The text read, in its entirety: “Teachers at an ele-
mentary school taught their students a game for two children
to play. They observed the results of pairs of students play-
ing the game and tried to come up with a way to predict (for
any given pair of students) who was going to win the game.
At first it was difficult for the teachers to notice anything
that would help them correctly predict the outcomes of the
games. Then the teachers started organizing the children by
the height of the children and the pattern of results quickly
became apparent. The teachers were able to use the height
of the children and make very accurate predictions as to who
(for any given pair of students) was going to win the game.”
The Neutral Prime vignette was identical, except that instead
of organizing the children by height, children were organized
by the shirt color. Shirt color was chosen because pilot work
suggested that numerous possible orderings may be plausi-
ble (e.g. sorting by the color wheel; bold colors vs. neutral
colors; arranging from lightest to darkest colors, etc.), and
thus the primed causal rule was somewhat arbitrary. Follow-
ing the vignettes, participants were asked to respond to two
simple questions about the story on the back of the sheet.

Causal Learning: In the first part of the causal learning
task, participants saw sets of blue blocks (individuated by a
letter on the block) that sometimes lit up when they interacted
with each other. The actual rule, unbeknownst to the partici-
pants, was that the blocks could be ordered by “strength” with
the “stronger” blocks always causing the “weaker” blocks to
light (i.e. a variable like “height” given in the Strong Prime
vignette, that would result in causal relations following a rank
order3). As participants encountered data, they were asked to
make predictions about the result of new block interactions
(“Will this block light? Yes or no?”) and provided confi-
dence ratings on a scale of 1 to 7 (see Figure 1). Follow-
ing all evidence, participants were asked to describe the rule
they had discovered that best captured the pattern of light-

3Pilot work suggested that causal relations that follow a rank-
order (e.g. dominance hierarchy) are not immediately obvious, but
still potentially discoverable to participants, following suggestive
evidence.



ing/nonlighting blocks and whether they could organize the
blocks to best capture the rule.

In the second part of the causal learning task, participants
were asked to evaluate four different explanations describing
how the blocks should interact. Two explanations captured
some, but not all of the data (e.g. “The blocks can be or-
ganized into two groups: blocks s, k, & m have the power
to light up the other blocks (y, w, & g). Blocks in the same
group do not light each other.”) One explanation was nonde-
scriptive: “The blocks can not be organized. They will light
or not light randomly, but only one block can be lit at a time.”
And the final explanation was the target explanation, which
correctly described the data: “The blocks can be organized
by ‘strength’. The stronger blocks will light the weaker ones.
Strongest s k m y w/g Weakest”. Participants rated the expla-
nations on a scale from 1 (“not good”) to 7 (“very good”).

Results
Data were coded by the first author and reliability coded by
a research assistant blind to condition and hypothesis out-
comes. Explanation generation responses were labeled as
“correct” or “incorrect”. Agreement was 98%; the single dis-
agreement was resolved conservatively with respect to pre-
dictions. Two participants were excluded and replaced for
failing to provide a sensible response to the comprehension
questions. Otherwise, all participants completed the compre-
hension questions for the priming vignettes.

Results confirmed that the ability to generate a hypothesis
is separate from the evaluation of hypotheses. As predicted
by Bayesian inference, there were no differences in evalu-
ating the hypotheses between conditions: Both the Strong
Prime and Neutral Prime participants readily rated the cor-
rect explanation equally likely: (Strong: 5.3; Neutral: 5.6;
t(38) = .48, p = ns), and both groups ranked it well above
the other (incorrect) provided rules (Strong: 2.8; Neutral: 3.0)
(Wilcoxon Signed-Rank: Strong, z= 3.07, p= .001; Neutral,
z = 3.60, p < .001) (Figure 2). However, there was a sig-
nificant effect of condition: Participants in the Strong Prime
condition were significantly more likely to answer the pre-
diction questions correctly (Wilcoxon Signed-Rank: w = 45,
p < .01; Figure 2a) and were more likely to generate the cor-
rect rule, Pearson χ2(N = 40,1) = 3.6, p = .058. 65% of the
participants in the Strong Prime condition provided the cor-
rect hypothesis, whereas only 35% of participants in the Neu-
tral Prime condition generated the correct hypothesis (Figure
2b). That is, even though participants in the Neutral Prime
condition were able to correctly evaluated the rules when they
were provided, they were not necessarily able to generate the
correct rule from the evidence alone.

We also looked at participant explanation ratings with the
dependent factor being whether or not the participant gener-
ated the correct prediction on their own. Participants who
did not generate the correct rule on their own still provided a
significantly higher rating to the correct explanation (mean =
4.9) than to the incorrect explanations (mean = 3.3)(Wilcoxon
Signed-Rank: z = 2.63, p < .01). That is, even though these

participants were not able to generate the correct rule on their
own, they were perfectly able to evaluate the good and bad
explanations, being more likely to rate the correct explana-
tion higher than the incorrect explanations.

Discussion
Connecting the computational and algorithmic levels is a sig-
nificant challenge for Bayesian models of cognition. We have
shown that considering the algorithms by which people might
perform inductive inference can provide insight into how dif-
ferent psychological processes influence the conclusions that
we can draw when using Bayesian models. Mathematical
analysis of a simple algorithm in which learners first gen-
erate and then evaluate hypotheses indicates that while the
resulting behavior is still consistent with Bayesian inference,
estimation of a prior distribution from this behavior will con-
found the probability of generating a hypothesis and its a pri-
ori plausibility.

The responses of participants in our experiment provide
some empirical support for the assumptions behind our anal-
ysis: While priming influenced whether participants could
generate the correct explanation, it did not affect participants
ability to correctly evaluate explanations that were provided.
That is, one interpretation of our results is that the prime af-
fected the distribution q(h) from which hypotheses are gener-
ated, but it did not affect the prior probability of any particu-
lar hypothesis p(h), since there were no differences between
conditions when participants were asked to evaluate hypothe-
ses that were provided to them. In the remainder of the paper,
we consider some of the implications of these results and di-
rections for future work.

Errors and approximations
Approaching inductive inference from the algorithmic level
results in additional implications and predictions that may be
valuable to explore in future work. For example, the algo-
rithmic approach taken in this paper offers some reconcilia-
tion between computational level theories that suggest peo-
ple are carrying out rational inference, with approaches that
show people performing in seemingly “irrational” ways, such
as not coming to the correct conclusion despite unambigu-
ous or compelling evidence. By suggesting that people may
be approximating rational inference by sampling a subset of
hypotheses, these failures of inductive inference can be ex-
plained as the result of not generating appropriate hypothe-
ses.

This makes predictions about the factors that should influ-
ence the errors that people make in inductive inference. For
example, as the hypothesis space becomes large, the prob-
ability of sampling the correct hypothesis decreases. Thus,
we should observe a trade-off between the size of the space
and the probability of generating the correct explanation.
Similarly, if cognitive limitations are imposed (for exam-
ple increasing participant computational load, with additional
tasks) then the set size of samples generated should decrease,
and thus decrease the probability of generating the correct



Figure 2: (a) Participants’ responses to the final four prediction questions in the Neutral and Strong Prime conditions. (b)
Percentage of participants who generated the correct explanation. (c) Average rating (1 weakest - 7 strongest) of the provided
explanations by participants in both conditions.

sample. It may also be valuable to explore these questions in
a developmental setting, examining how changes in informa-
tion processing capacity influence the conclusions that chil-
dren reach.

Conclusion
Bayesian models of cognition provide a computational-level
account of inductive inference. Here, we have presented an
analysis that shows how taking an algorithmic-level approach
can allow us to tease apart two processes that are confounded
in computational-level models: hypothesis generation and
evaluation. We also present experimental results that suggest
that these two processes are separable in human inductive in-
ference. Together, our analysis and empirical findings indi-
cate that we should take both the probability of generating a
hypothesis and its a priori plausibility into account when in-
terpreting prior distributions estimated using Bayesian mod-
els. More generally, these results illustrate that understanding
human inductive inference will require working at both com-
putational and algorithmic levels of analysis, and establishing
the connections between them.
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