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Abstract 

Probabilistic models of cognitive development indicate the ideal solutions to 

computational problems that children face as they try to make sense of their 

environment. Under this approach, children's beliefs change as the result of a 

single process: observing new data and drawing the appropriate conclusions 

from those data via Bayesian inference. However, such models typically leave 

open the question of what cognitive mechanisms might allow the finite minds of 

human children to perform the complex computations required by Bayesian 

inference. In this chapter we highlight one potential mechanism: sampling from 

probability distributions. We introduce the idea of approximating Bayesian 

inference via Monte Carlo methods, outline the key ideas behind such methods, 

and review the evidence that human children have the cognitive prerequisites for 

using these methods. As a result, we identify a second factor that should be 

taken into account in explaining human cognitive development -- the nature of 

the mechanisms that are used in belief revision. 
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1 Rational Randomness 

 Over the past ten years, probabilistic approaches to cognitive 

development have become increasingly prevalent and powerful. These 

approaches can be seen as a computational extension of the “theory theory” -- 

the idea that children’s learning is similar to learning in science. In both cognitive 

development and science, learners begin with beliefs about the world that are 

gradually, but rationally, revised in the light of new evidence. Probabilistic models 

provide a way of characterizing both these beliefs—as structured models of the 

world—and the process of belief revision.   

 In this chapter we’ll describe recent work that addresses two problems 

with the probabilistic approach. One is what we’ll call the “algorithm problem”. 

Probabilistic approaches to cognitive development, like rational models in 

general, began with a computational level analysis. Researchers have shown 

that, given particular patterns of evidence, children draw rationally normative 

conclusions. However, this raises the question of exactly what computations or 

algorithms children’s minds might perform to yield those answers. This problem 

is particularly important because some of the most obvious possible procedures, 

such as enumerating each possible hypothesis and checking it against the 

evidence, are clearly computationally intractable. 

The other problem is what we’ll call the “variability problem”. When we ask 

a group of children a question, typically they will produce a variety of answers. 

When we say that four-year-olds get the rationally “right” answer, what we really 

mean is that more of them produce the correct answer than we would expect by 
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chance. Moreover, individual children characteristically will give different answers 

to the same question on different occasions. They show lots of variability in their 

individual behavior; their explanations often appear to randomly jump from one 

idea to the next rather than linearly converging on the correct beliefs (Piaget, 

1983; Siegler, 1996). We can witness this same kind of apparently random 

variability in children’s play and informal experimentation. Rather than 

systematically acting to test one hypothesis at a time, children appear to veer at 

random from one kind of test to another (Chen & Klahr, 1999; Inhelder & Piaget, 

1958).    

This variability was one of the factors that originally led Piaget to describe 

young children’s behavior as irrational. Indeed, such findings have led some 

researchers to suggest that children’s behavior is always intrinsically variable and 

context-dependent (e.g., Greeno, 1998; Lave & Wenger, 1991; Thelen & Smith, 

1994). This would seem to make children’s learning very different from the kind 

of systematic and rational hypothesis testing we expect from science. 

 In this chapter we will argue that the solutions to these two problems, the 

algorithm problem and the variability problem, are related. Sampling from a 

probability distribution, rather than exhaustively enumerating possibilities, is a 

common strategy in algorithms for Bayesian inference used in computer science 

and statistics. There are many different sampling algorithms, but all of them have 

the feature that only a few hypotheses are, or even a single randomly selected 

hypothesis is, tested at a time. It can be shown that in the long run, an 
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algorithmic process of this kind will approximate the ideal Bayesian solution to 

the search problem.  

 First, we will argue that the idea of sampling, in general, helps make 

sense of children’s variability. We will argue that the way children act is 

consistent with a rational account of belief revision and only seems irrational 

because our intuitions about what an ideal learner should look like do not take 

into account the complexity of the inferences that children need to make and the 

algorithmic procedures they use to make them. In particular, systematic 

variability is a hallmark of sampling processes. By thinking about how children 

might use effective algorithmic strategies for making such inferences, we come to 

see these apparently irrational behaviors in a different light. We are starting to 

show empirically that children’s variability is, in fact, systematic in just the way we 

would predict if they were using a sampling-based algorithm. 

Second, we will describe two particular psychologically plausible sampling 

algorithms that can approximate ideal Bayesian inference—the Win-Stay, Lose-

Shift procedure and a variant of the Markov Chain Monte Carlo algorithm. We will 

show empirically that, in different contexts, children may use something like 

these algorithms to make inferences about the causal structure of the world. 

 

2 The Algorithm Problem and Marr’s levels of analysis 

 Marr (1982) identified three distinct levels at which an information-

processing system can be analyzed: the computational, algorithmic, and 

implementational levels.  We will focus on the computational and algorithmic 
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levels here. (The implementational level, which answers the question of how the 

system is physically realized—e.g. what neural structures and activities 

implement the learning processes described at the algorithmic level—warrants 

focus in future work.) We will first give a brief overview of the computational and 

algorithmic levels and then delve more deeply into the specific algorithms young 

learners may be using. 

 

2.1 Computational Level 

 Marr’s computational level focuses on the computational problems that 

learners face and the ideal solutions to those problems. For example, Bayesian 

inference provides a computational-level account of the inferences people make 

when solving inductive problems, focusing on the form of the computational 

problem and its ideal solution. Bayesian models are useful because they provide 

a formal account of how a learner should combine prior beliefs and new evidence 

to change her beliefs.  

 In Bayesian inference, a learner considers how to update her beliefs (or 

hypotheses, h) given some observed evidence (or data, d). Assume that the 

learner has different degrees of belief in the truth of these hypotheses before 

observing the evidence, and that these degrees of belief are reflected in a 

probability distribution p(h), known as the prior. Then, the degrees of belief the 

learner should assign to each hypothesis after observing data d are given by the 

posterior probability distribution p(h|d) obtained by applying Bayes’ rule  
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 (1) 

where p(d|h) indicates the probability of observing d if h were true, and is known 

as the likelihood. 

 An important feature of Bayesian inference is that it doesn’t just yield a 

single deterministically correct hypothesis given the evidence. Instead, Bayesian 

inference provides an assessment of the probability of all the possible 

hypotheses. The “prior” distribution initially tells you the probability of all the 

possible hypotheses. Each possible hypothesis can then be assessed against 

the evidence using Bayes rule. This produces a new distribution of less likely and 

more likely hypotheses. Bayesian inference proceeds by adjusting the 

probabilities of all the hypotheses, the distribution, in the face of new data. It 

transforms the “prior” distribution you started with—your  degrees of belief in all 

the possible hypotheses—into a new “posterior” distribution. So, in principle, 

Bayesian inference not only determines which hypothesis you think is most likely, 

it also changes your assessment of all the other less likely hypotheses.  

 The idea that inductive inference can be captured by Bayes’ rule has been 

applied to a number of different aspects of cognition, demonstrating that people’s 

inferences are consistent with Bayesian inference in a wide range of settings (e.g. 

Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Griffiths & Tenenbaum, 

2009; Kording & Wolpert, 2004; Weiss, Simoncelli, & Adelson, 2002; Xu & 

Tenenbaum, 2007). People do seem to update their beliefs given evidence in the 

way that specific Bayesian models predict. 
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Bayesian models have proved especially helpful in understanding how 

children might develop intuitive theories of the world. We can think of intuitive 

theories as hypotheses about the structure of the world, particularly its causal 

structure. Causal graphical models (Pearl, 2000; Spirtes, Glymour, & Schienes, 

1993) and more recently hierarchical Bayesian models (Tenenbaum, Griffiths, & 

Kemp, 2006) provide particularly perspicuous representations of such 

hypotheses. In particular, by making explicit and systematically relating the 

structure of hypotheses to probabilistic patterns of evidence, Bayesian causal 

models can establish the probability of particular patterns of data given particular 

hypotheses. This means that Bayesian inference can then be used to combine 

prior beliefs and the likelihood of newly observed evidence given various 

hypotheses,  to update the probability of hypotheses – making some beliefs more 

and others less likely.  

In fact, there is now extensive evidence that this computational approach 

provides a good explanatory account of how children infer hypotheses about 

causal structure from evidence. We can manipulate the evidence children see 

about a causal system, as well as their beliefs about the prior probability of 

various hypotheses about that structure, and see how this influences their 

inferences about that system. Quite typically children choose the hypotheses with 

the greatest posterior probability in Bayesian terms (Bonawitz et al, 2012; 

Bonawitz, Fischer, & Schulz, 2012; Goodman et al, 2008; Gopnik et al. 2001, 

2004, Kushnir & Gopnik 2005, 2007, Schulz, Gopnik & Glymour 2007, Lucas, 

Gopnik, & Griffiths, 2010; Schulz, Bonawitz, & Griffiths, 2007; Sobel et al. 2004). 
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 However, the finding that the average of children’s responses looks like 

the posterior distributions predicted by these rational models does not 

necessarily imply that learners are actually carrying out the calculation 

instantiated in Bayes’ rule at the algorithmic level.  Indeed, given the 

computational complexity of exact Bayesian inference, this would be impossible. 

So it becomes interesting to ask how learners might be behaving in a way that is 

consistent with Bayesian inference.  

 

2.2 Algorithmic level 

 Marr’s algorithmic level asks how an information-processing system does 

what it does; for example, what cognitive processes do children use to propose, 

evaluate, and revise beliefs? The computational level has provided an important 

perspective on children’s behavior, affording interesting and testable qualitative 

and quantitative predictions that have been borne out empirically. But it is just the 

starting point for exploring learning in early childhood. Indeed, considering other 

levels of analysis can help to address significant challenges for Bayesian models 

of cognitive development.  

 In particular most computational-level accounts do not address the 

problem of search. For most problems, the learner can’t actually consider every 

possible hypothesis, as it would be extremely time-consuming to enumerate and 

test every hypothesis in succession. Researchers in AI and statistics have raised 

this concern, showing that given complex problems and the time constraints of 

real world inference, full Bayesian inference quickly becomes computationally 
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intractable (e.g., Russell & Norvig, 2003). Thus, rational models raise questions 

about how a learner might search through a (potentially infinite) space of 

hypotheses: If the learner simply maximized, picking out only the most likely 

hypothesis to test, she might miss out on hypotheses that are initially less likely 

but actually provide a better fit to the data. This problem might appear to be 

particularly challenging for young children who, in at least some respects, have 

more restricted memory and information-processing capacities than adults 

(German & Nicholas, 2003; Gerstadt, Hong, & Diamond, 1994). 

Applications of Bayesian inference in computer science and statistics 

often try to solve the computational problem of enumeration and evaluation of the 

hypothesis space by sampling a few hypotheses rather than exhaustively 

considering all possibilities. These approximate probabilistic calculations use 

what are called “Monte Carlo” methods. A system that uses this sort of sampling 

will be variable—it will entertain different hypotheses apparently at random.  But 

this variability will be systematically related to the probability of the hypotheses—

more probable hypotheses will be sampled more frequently than less probable 

ones.  The success of Monte Carlo algorithms for approximating Bayesian 

inference in computer science and statistics suggests an exciting hypothesis for 

cognitive development. The algorithms children use to perform inductive 

inference might be similarly based on sampling from the appropriate probability 

distributions. We explore this Sampling Hypothesis in detail in the remainder of 

the chapter. 
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The Sampling Hypothesis provides a way to reconcile rational reasoning 

with variable responding, and it has the potential to address both the algorithmic 

and search problem. It also establishes an empirical research program, in which 

we look for the signatures of sampling in general, and of specific sampling 

algorithms in particular, in children’s behavior 

 

3 Approximating Bayesian Inference with Monte Carlo Methods 

 Monte Carlo algorithms include a large class of methods that share the 

same general pattern. They first define the distribution that samples will come 

from, then randomly generate the samples, and finally aggregate the results. The 

goal is usually to approximate an expectation of a function over a probability 

distribution (e.g., the mean of the distribution, or the probability that a sample 

from the distribution has a particular property); that is, an approximation of the 

distribution is given by summing over all the different individual samples 

generated during the MCMC process.  

 The simplest Monte Carlo methods directly generate samples from the 

probability distribution in question. For example, if you wanted to know the mean 

of the distribution that assigns equal probability to the numbers one through six, 

you could calculate the exact mean by averaging over each probability for each 

value (one through six). Monte Carlo methods provide an alternative to 

numerically computing the mean: instead, you could imagine rolling a fair die to 

generate samples from this distribution, tracking the results of each roll, and then 

averaging the results together. This process would let you uncover an important 
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fact about the distribution without having to numerically calculate the probability 

of each possible outcome individually. Although in this example, it would be 

relatively trivial to numerically compute the exact mean, Monte Carlo sampling 

provides an alternative approach that can be used when the distributions become 

harder to evaluate, such as considering the product of multiple dice rolls. When 

the probability distributions we want to sample from get even more complex, 

more sophisticated methods need to be used to generate samples. In particular, 

it can quickly become computationally intractable to take samples directly from 

the posterior distribution itself, so various Monte Carlo algorithms have been 

developed to best approximate these different kinds of complexity.  

 Monte Carlo algorithms for approximating Bayesian inference are thus 

methods for obtaining the equivalent of samples from the posterior distribution 

without computing the posterior distribution itself. One class of methods, based 

on a principle known as importance sampling, generates hypotheses from a 

distribution other than the posterior distribution, and then assigns weights to 

those samples (akin to increasing or decreasing their frequency) in order to 

correct for the bias produced by using a different distribution to generate 

hypotheses (see Neal, 1993, for details).  

 The strategy of sampling from other known distributions and then updating 

the sample to correct for bias can also be used to develop algorithms for 

probabilistically updating beliefs over time. For example, in a particle filter (see 

Doucet, de Frietas, & Gordon, 2001, for details), hypotheses are generated 

based on a learner’s current beliefs, and then reweighted to reflect the evidence 
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provided by new observations. This provides a way to approximate Bayesian 

inference that unfolds gradually over time, with only a relatively small number of 

hypotheses being considered at any one instant. 

 Another class of Monte Carlo methods make use of the properties of 

Markov chains. These Markov Chain Monte Carlo algorithms, such as the 

Metropolis Hastings algorithm, explore a posterior probability distribution in a way 

that requires only a single hypothesis to be considered at a time (see Gilks, 

Richardson, & Spiegelhalter, 1996, for details). In these algorithms, a learner 

generates a hypothesis by sampling a variant on his or her current hypothesis 

from a “proposal” distribution. The proposed variant is compared to the current 

hypothesis, and the learner stochastically selects one of the two hypotheses. 

This process is then repeated, and the learner gradually explores the space of 

hypotheses in such a way that each hypothesis will be considered for an amount 

of time that is proportional to the posterior probability of that hypothesis.  

 Overall, Monte Carlo methods have met with much success in exploring 

posterior distributions that are otherwise too computationally demanding to 

evaluate (see Robert and Casella, 2004, for a review). Recent work by Griffiths 

and colleagues has explored how Monte Carlo methods can be used to develop 

psychological models that incorporate the cognitive-computational limitations that 

adult learners face. Some empirically generated psychological process models 

turn out to correspond to the application of Monte Carlo methods. For example, 

Shi, Feldman, and Griffiths (2008) showed that importance sampling corresponds 

to exemplar models, a traditional process-level model that has been applied in a 
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variety of domains. Sanborn, Griffiths, and Navarro (2010) used particle filters to 

approximate rational statistical inferences for categorization. Bonawitz and 

Griffiths (2010) show that importance sampling can be used as a framework for 

analyzing the contributions of generating and then evaluating hypotheses.  

 Other research supports the idea that adults may be approximating 

rational solutions through a process of sampling. For example, adults, like 

children, often generate multiple answers to a question. If you ask adults how 

many beans are in a large jar they will provide a range of responses. A classic 

result shows that the averaged result of many such responses converges on the 

right answer, even though any individual guess may be very far from the correct 

mean, (“The Wisdom of Crowds”; Galton, 1907; Surowiecki, 2004). The same 

effect holds even when a single person makes multiple guesses, although if there 

are dependencies between an individual’s subsequent guesses, the average of 

the responses will not produce a correct approximation.  This is because Monte 

Carlo methods require that responses be independently distributed.  However, 

the overall “Wisdom of the Crowds” phenomena support the idea that (adult) 

individuals are not simply providing their best guess but rather are sampling from 

a subset of hypotheses when making inferences (Vul & Pashler, 2008). Related 

work suggests that people often base their decisions on just a few samples 

(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Mozer, Pashler, & Homaei, 

2008) and in many cases an optimal solution is to take only one sample (Vul, 

Goodman, Griffiths, & Tenenbaum, 2009). These results suggest that adults may 

be approximating probabilistic inference through psychological processes that 
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are equivalent to sampling from the posterior.  That is, the learner need not 

compute the full posterior distribution in order to sample responses that still lead 

to an approximation of the posterior.  Here, we use “sampling from the posterior” 

to entail any sampling processes that produce equivalent samples, without 

necessarily requiring the learner to compute the full posterior.  

 These processes that approximate the full posterior are consistent with 

what we have termed the Sampling Hypothesis. The signature of sampling-based 

inferences is the fact that apparently random guesses actually reflect the 

probability of the hypotheses they embody. Each person may produce a different 

hypothesis about the outcome of two dice rolls on a different occasion, but 

hypotheses that are closer to correct – that is those that have a higher probability 

in the posterior distribution -- will be more likely to be produced than those that 

are less likely. If two fair dice are rolled, the most likely outcome is 7, however 

people generate a range of guesses with varying probability. Guesses of 6 or 8, 

will be five times more likely to be true than guesses of 2 or 12.  The Sampling 

Hypothesis predicts that human beings are also five times more likely to produce 

those guesses; indeed, it predicts that the probability that an individual will guess 

any particular outcome will match the probability of generating that outcome 

under the true distribution.  

 

4 The Sampling Hypothesis and children’s inferences 

 Might children’s inferences be consistent with the Sampling Hypothesis? 

The first step in exploring this claim is to see whether children produce 
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responses that are consistent with Bayesian inference in general. The second 

step is to see whether children produce behaviors that are consistent with 

sampling in particular.  In order to demonstrate that children’s responding is 

consistent with Bayesian inference, we must demonstrate that children are 

sensitive both to their prior beliefs and to the evidence they observe. As we 

described above, many studies show that children choose the probabilistically 

most likely hypothesis, but to truly test the prediction that children are sensitive to 

posterior distributions, then children’s responses should change when both their 

prior beliefs and the probability of the evidence are independently manipulated. 

We highlight a few studies that suggest children produce responses consistent 

with Bayesian inference. We then briefly discuss alternatives to the sampling 

hypothesis. Finally, we turn to more detailed empirical evidence supporting the 

claim that children sample responses.  

 

4.1 Preschoolers producing responses consistent with Bayesian inference 

 Before we are able to identify whether children sample responses in a way 

that approximates a posterior distribution, we must first demonstrate that 

children’s responses are consistent with those distributions. Schulz, Bonawitz, 

and Griffiths (2007) presented preschoolers with stories pitting their existing 

theories against statistical evidence.  Each child heard two stories in which two 

candidate causes co-occurred with an effect.  Evidence was presented in the 

form: ABE, ACE, ADE, etc.  In one story, all variables came from the same 

domain; in the other, the recurring candidate cause, A, came from a different 
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domain (A was a psychological cause of a biological effect). After receiving this 

statistical evidence, children were asked to identify the cause of the effect on a 

new trial. Consistent with the predictions of the Bayesian framework, both prior 

beliefs and evidence played a role in children’s causal predictions.  Four-year-

olds were more likely to identify ‘A’ as the cause after observing the evidence 

than at Baseline. Results also revealed a role of theories in guiding children’s 

predictions. All children were more likely to identify A as the cause within 

domains than across domains.  

A particularly interesting empirical feature of this study is that because 

Schulz et al had a measure of children’s prior beliefs at baseline, they could 

demonstrate that proportionally the children’s responses (after having observed 

the evidence) were consistent with posterior distributions predicted by Bayesian 

models. That is, after observing the evidence, some children endorsed 

hypothesis “A” and others endorsed the other hypothesis. The proportion of 

children who favored “A” was the probability of “A” being the actual cause, given 

the prior beliefs of the children and the evidence observed.  For example, when 

the posterior predicted 80% probability for hypothesis “A”, then results revealed 

about 80% of the children choosing ”A”.  

Other studies reveal children producing graded responses to evidence 

reflecting Bayesian posteriors (Bonawitz & Lombrozo, 2012; Kushnir & Gopnik 

2005, 2007, Sobel et al 2004). For example, Bonawitz and Lombrozo (in press) 

investigated whether young children prefer explanations that are simple, where 

simplicity is quantified as the number of causes invoked in an explanation, and 
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how this preference is reconciled with probability information.  Preschool-aged 

children were asked to explain an event that could be generated by one or two 

causes, where the probabilities of the causes varied across several conditions. 

Children preferred explanations involving one cause over two, but were also 

sensitive to the probability of competing explanations. That is, as evidence 

gradually increased favoring the complex explanation, the proportion of children 

favoring the complex explanation also increased. These data provide support for 

a more nuanced sensitivity to evidence. When evaluating competing causal 

explanations preschoolers are able to integrate evidence with their prior beliefs 

(in this case employing a principle of parsimony like Occam’s razor as an 

inductive constraint).  However, because children’s prior beliefs were not 

independently evaluated, it is difficult to say whether the proportion of responses 

generated by children in these studies matched a true posterior distribution 

predicted by a Bayesian model. 

 

4.2 Alternatives to sampling 

 The studies above suggest that children are sensitive to evidence in ways 

predicted by Bayesian inference; at least, a proportion of children select the 

hypothesis that is best supported by the evidence and their prior beliefs. There is 

also variability in children’s responses –the proportion of times that they select a 

hypotheses increases as the hypothesis receives more support, but they will still 

sometimes produce an alternative hypothesis.  But does that mean that children 

are sampling their responses from a posterior distribution? It might instead be 
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that the variability in the children’s responses is simply the effect of noise—in fact 

this is the most common, if generally implicit, assumption in most developmental 

studies. This noise could be the result of cognitive load, context effects, or 

methodological flaws that lead children to stochastically produce errors. For 

example in the Schulz et al (2007) study, all the children might indeed be 

choosing the most likely hypothesis on each trial, always preferring the within-

domain or cross-domain answer. But they might fail to express that hypothesis 

correctly because of memory or information-processing or communication 

problems. We call this alternative the Noisy Maximizing alternative to the 

sampling hypothesis. 

Another alternative is that children’s behavior does reflect the probability 

of hypotheses but does so through the result of a simpler process than 

hypothesis sampling. Consider a similar though simpler phenomenon that can be 

found in a much older literature. Children, like adults and even non-human 

animals, frequently produce a pattern called probability matching in 

reinforcement learning (e.g. Jones & Liverant, 1960). If children are rewarded 

80% of the time for response “A” but 20% of the time for response “B”, they are 

likely to produce “A” 80% of the time and “B” 20% of the time. If these responses 

reflect an implicit hypothesis about the causal power of the action (“A” will cause 

the reward), this probability matching looks a lot like the behavior in the more 

explicitly cognitive causal learning tasks. It might, however, simply be the result 

of a strategy we will call “Naïve Frequency Matching”. Children using this 
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strategy would simply match the frequency of their responses to the frequency of 

the rewards. 

 The idea that the variability of children’s responses could result from 

sampling is related to probability matching in that it predicts that the learner’s 

responses on aggregate will match the posterior. Thus, probability matching 

following reinforcement is consistent with the Sampling Hypothesis, but it is also 

consistent with the Naïve Frequency Matching account. These two accounts 

differ in that sampling implies a level of sophistication that goes beyond what is 

typically assumed when the term “probability matching” is used. Rather than 

simply matching the frequency of rewarded responses, sampling predicts that 

children’s responding matches the posterior probabilities of different hypotheses.  

Moreover, there is still something puzzling about probability matching from 

the point of view of simple reinforcement theory. Why would children use a naïve 

frequency matching strategy? Why don’t all the children select the more probable 

hypothesis? This is the strategy, after all, that is most likely to yield a right 

answer and so enable the children to be rewarded. Why are 20% of children 

choosing the less likely hypothesis? If children are sampling responses from the 

posterior distribution, this could explain this result. On this view, the variability in 

children’s responses may actually itself be rational, at least sometimes. In 

particular, it may reflect a strategy children use to select which hypotheses could 

explain the data they have observed.  

 There is little work exploring probability matching in children beyond 

simple reinforcement learning. What there is suggests that children do not, in fact, 
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probability match when they are considering more cognitive hypotheses—

particularly linguistic hypotheses (Hudson Kam & Newport, 2005; 2009). In what 

follows, we present a set of studies that present the first test of the Sampling 

Hypothesis with children, distinguishing sampling from both the Naïve Frequency 

Matching and Noisy Maximizing alternatives. 

 

4.3 Empirical support for children’s sampling   

In a first set of experiments, we explored the degree to which children match 

posterior probabilities in a causal inference task, set up as a game about a toy 

that activates when particular colored chips are placed inside a bin (Denison, 

Bonawitz, Gopnik, & Griffiths, 2010). The toy allowed us to precisely determine 

the probability of different hypotheses about which chip had fallen into the bin. 

Earlier studies have showed that even young infants are sensitive to probability 

in these contexts – 6-month-olds assume that the more frequent color chip will be 

more likely to be selected from the bag (Denison, Reed, & Xu, in press). In the 

first experiment, we tested two key predictions of the sampling hypothesis: 

probability matching and an effect of the dependency between responses. These 

are both known consequences of sampling behavior (Vul & Pashler, 2008).  

Children were introduced to a toy – a large box with an activator bin and 

an attached smaller toy that could light up and play music.  The experimenter 

demonstrated that placing red chips or blue chips into the activator bin caused 

the toy to activate.  Then a distribution of 20 red and 5 blue chips were placed 

into a transparent container and transferred into a rigid, opaque bag.  The 
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experimenter placed the bag on top of the toy and “accidentally” knocked it over 

away from the child and towards the activator bin, and the toy activated. The 

child was asked what color chip they thought fell into the bin to activate the toy. 

(See Figure 1.) Children in the short wait condition completed two additional trials 

immediately following this first trial, and children in the Long Wait condition 

completed two additional trials each one-week apart (all trials consisted of the 

same 80:20 distribution).   

We manipulated time between guesses because (following results with 

adults from Vul and Pashler, 2008), we suspected that there would be greater 

dependence among guesses if they were spaced close together. As described 

previously, one of the requirements of producing a “good” approximation to the 

posterior is independence between samples (although, there are a few special 

cases in which some dependency between responses can still yield accurate 

approximations—a point we’ll return to later). In general, however, the sampling 

hypothesis predicts different patterns of response when there is more 

dependence between hypotheses. Thus, we predicted that the long-wait 

condition should have produced more independence between the hypotheses 

(e.g. the children may not have remembered what they had just said) and so 

produce a better approximation to the posterior. 

Results indicated that, collapsed across conditions, children’s guesses on 

Trial 1 were in line with the signature of sampling: probability matching.  Children 

guessed the red chip (i.e. the more probable chip) on 70% of trials and the blue 

chip on 30% of trials, not significantly different from the predicted distribution of 
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80% and 20%, respectively, but significantly different from chance (50%).  

Children’s responses were also in agreement with the dependency results found 

with adults; children in both conditions showed some dependencies between 

guesses, but the dependencies were greater in the short wait than in the long 

wait condition. As the sampling hypothesis would predict, because there was less 

dependence, there was also a better fit to the actual probabilities in the long wait 

condition. 

Although the results of this first experiment suggest that children’s 

responses reflected probability matching, they are also congruent with the Noisy 

Maximizing prediction.  That is children may have attempted to provide maximally 

accurate “best guesses” but simply failed to do so at ceiling levels due to factors 

such as task demands or cognitive load.  In a second experiment, we tested the 

probability matching prediction more directly by systematically manipulating the 

distributions of chips children saw across three conditions.  In a 95:5 condition 

children counted 19 red and 1 blue chips, in a 75:25 condition they counted 15 

red and 5 blue chips, and in a 50:50 condition they counted 10 red and 10 blue 

chips. As predicted, children’s responses reflected probability matching. 

Children’s tendency to guess the red chip increased linearly as the proportion of 

red to blue chips increased from 50:50 to 75:25 to 95:5 (see Figure 2).  This 

result is congruent with probability matching but not noisy maximizing, as noisy 

maximizing would have resulted in similar performance between the 75:25 and 

95:5 conditions. 
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In a third experiment, we tested the probability matching prediction with a 

different, more complex set of hypotheses. Do children continue to produce 

guesses that reflect probability matching when more than two alternative 

hypotheses are available? In this experiment, children in two conditions were 

given distributions that included three different colors of chips: red, blue and 

green.  The procedure unfolded as it did in the first two experiments. As in the 

second experiment, the distributions were systematically manipulated across 

conditions.  Children in the 82:9:9 Condition saw distributions of 18 red, 2 blue 

and 2 green chips, and children in the 64:18:18 Condition saw 14 red, 4 blue and 

4 green chips.  In this experiment, children in both conditions guessed that the 

red chip had activated the machine more often than would be expected by 

chance but again they also did not choose the red chip at ceiling levels. 

Children’s responses reflected probability matching in that children in the 82:9:9 

Condition guessed the red chip 72% of the time, significantly more often than 

children in the 64:18:18 Condition, who guessed the red chip 53% of the time.  

The proportion of children choosing the red chip in the 82:9:9 Condition was not 

different from the predicted distribution of 82% and the proportion of children who 

did so in the 64:18:18 Condition was not different from the predicted distribution 

of 64%. 

Children in the second and third experiments produced guesses that are 

consistent with the probability matching prediction of the sampling hypothesis.  

However, as we mentioned previously, children in a variety of reinforcement 

learning paradigms have demonstrated probability matching to the frequencies of 
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reinforced responses. The current studies did not involve any reinforcement, and 

children responded to the number of chips in the container rather than to 

frequency of effects, so they could not simply be explained in terms of 

reinforcement learning. However, these results are still consistent with a variation 

of the Naïve Frequency Matching account. Although responses were not 

reinforced, children in these experiments may have matched their responses to 

the overall frequency of the chips – they said “red” more often simply because 

they saw more red chips. We conducted a fourth experiment to test the prediction 

that children’s responses will match the posterior distribution of hypotheses and 

not simply match the frequencies of the different colored chips encountered in 

the experimental session.   

The frequencies of chips can be separated from the probability of 

selecting each color by introducing a constraint on the generative process.  In a 

variant of the procedure used in the first three experiments, children counted two 

separate distributions of chips with the experimenter: one distribution of 14 red 

and 6 blue chips and a second distribution of 0 red and 2 blue chips.  The 

experimenter placed the separate distributions into two identical bags, mixed the 

placement of the bags around out of the child’s view, and then randomly chose 

one of the bags to place on the machine and knock over.  In this case, if children 

are solely concerned with the frequencies of each color of chip, they should 

guess a red chip on 64% of the trials and a blue chip on 36% of the trials.  If they 

are instead producing guesses based on the probability of either color chip falling 

from the randomly chosen bag, they should guess the red chip 35% of the time 
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and the blue chip 65% of the time [P(blue chip) = (1/2×6/20 + 1/2×2/2)].  Children 

guessed the red chip on 32% of the trials, different from chance (50%) and the 

frequency matching prediction (64%) but not different from the posterior 

probability matching prediction (35%).  

In sum, results from these four experiments suggest that children’s 

responses in a simple causal inference task were in agreement with the sampling 

hypothesis.  First, children showed dependencies between guesses on three 

consecutive trials and this dependency decreased as a function of time between 

guesses, and more independence led to greater probability matching.  Second, 

children provided responses that, on aggregate, reflected the posterior 

distribution of hypotheses when making guesses involving either two possible 

hypotheses or three possible hypotheses, ruling out the possibility that children 

were noisily maximizing. Finally, children’s guesses matched the posterior 

distribution of hypotheses rather than the simple frequencies of observed colors 

of chips. They rationally integrated the probability of randomly selecting one of 

the two distributions with the frequency of the chips within the distributions.   

 

5 Exploring specific sampling algorithms in children’s causal inferences 

The experiments discussed in the previous section provide preliminary support 

for the Sampling Hypothesis, suggesting that children are doing something that 

looks like sampling as opposed to noisily maximizing, and that children are going 

beyond making simple frequency tabulations in causal learning tasks. While 

these results suggest that learners sample responses from posterior distributions, 
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these studies were not designed to explore specific algorithms a learner might be 

using to select a hypothesis as she encounters new data, and they do not 

propose a specific mechanism for search through a hypothesis space.   

 There are myriad ways in which a learner could move through the space 

of hypotheses consistent with sampling algorithms.  Learners may resample a 

best guess from the full posterior every time a new piece of data is observed.  

Learners may sample a hypothesis and stick with it until there is impetus to re-

evaluate (e.g. maybe data reaches some threshold of “unlikeliness” to have been 

generated by the current hypothesis). The way in which a learner chooses to re-

evaluate hypotheses may also differ: she may make subtle changes to the 

hypothesis she’s currently entertaining; she may go back and resample 

completely from the full posterior distribution; or she may choose a best guess 

from some surrogate distribution (an approximation to the posterior distribution).  

Learners could sample and simultaneously consider a few hypotheses or just 

one. These ideas about specific sampling and search algorithms have analogs in 

computer science and machine learning. We present two different studies 

designed to test whether children might be using variants of two types of search 

algorithms – a Win-Stay, Lose-Shift algorithm (WSLS) and a Markov Chain 

Monte Carlo (MCMC) algorithm.   

           In order to explore the WSLS and MCMC algorithms, we presented 

children with more complex causal learning tasks that unfolded over time. 

Children received new evidence at several stages, and at each stage we asked 

them to provide a new guess about what was going on. The pattern of responses 
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that children produced and particularly the dependencies among those 

responses, helped allow us to discriminate which specific algorithms they 

employed.  

 

5.1 Win-stay, lose-shift algorithms 

 To test the idea that children use the Win-Stay, Lose-Shift algorithm, we 

designed both deterministic and probabilistic causal tasks. In the deterministic 

task, data necessarily “rule out” a set of possible hypotheses; in the probabilistic 

task, the data are consistent with all hypotheses, but statistically may favor 

certain hypotheses over others. The task proceeds as follows: We let children 

take an initial guess, before seeing any evidence; we then show children some 

evidence and ask them about their hypotheses after the evidence; we then show 

children more evidence and ask them again about their hypotheses, and so forth 

and so on. Thus, children observed a sequence of data, and we could use the 

responses of an individual child as he or she moved through the hypothesis 

space following each piece of evidence, to help us tease apart different specific 

algorithms. 

 In particular, we were interested in algorithms based on the Win-Stay, 

Lose-Shift (WSLS) principle. These algorithms entertain a single hypothesis at a 

time, staying with that hypothesis as long as it adequately explains the observed 

data and shifting to a new hypothesis when that is no longer the case. The WSLS 

principle has a long history in computer science, where it is used in reinforcement 

learning and game theory (Robbins, 1952; Nowak & Sigmund, 1993), and 
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psychology, where it has served as an account of human concept learning 

(Restle, 1962). Bonawitz, Denison, Chen, Gopnik, & Griffiths (2011) provided a 

mathematical proof that demonstrates how specific algorithms using the WSLS 

principle can be used to sample from posterior distributions.  The result is a set of 

surprisingly simple sequential algorithms for performing Bayesian inference.  

 The deterministic case of Win-Stay, Lose-Shift means that data 

necessarily rule out a set of hypotheses. The algorithm simply involves a process 

where the learner stays with a hypothesis when data are consistent, and shifts to 

a new hypothesis when data are inconsistent.  The probabilistic case presents a 

more interesting, and ecologically plausible test of WSLS, so we focus on the 

probabilistic studies here.  

 In the probabilistic causal task, we introduced children to a machine that 

could be activated with different kinds of blocks. An experimenter demonstrated 

that three kinds of blocks activate the machine with different probabilities: red 

blocks activated the machine on five out of six trials, the green blocks on three 

out of six trials, and the blue blocks just once out of six trials.  We then 

introduced children to a new block that had “lost its color” and told children we 

needed their help guessing what color the block should be: red, blue, or green. 

We then asked children what happened each time the mystery block was placed 

on the machine (either the machine activated or did not); after each observation 

we asked children what color they thought the block was now.  

 One specific WSLS algorithm proceeds on the problem of inferring the 

identity of the mystery block given probabilistic data as follows. The learner starts 
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out by sampling a hypothesis from the prior distribution, before seeing any data 

about the mystery block. Let’s say that she happens to choose red by sampling it 

randomly from her prior; all that means is that she rolls a weighted die such that 

the weights of the colors on the die are proportional to her beliefs about how 

likely the block is to be each color, before seeing the evidence. In this case, for 

example, the prior evidence provides an equal probability for each block initially, 

so she might be equally likely to guess red, blue or green. In another case she 

might have reason to think that red blocks were more common, so that she would 

weight the internal throw of the die more heavily towards red, though blue or 

green might also turn up. Let’s say this learner happens to roll red. Then the 

mystery block is set on the machine and it turns out that it activates the toy. The 

learner now must decide whether to stay with red or shift to another hypothesis. 

In this simple WSLS algorithm, the decision to stay or shift is made based purely 

on the likelihood for the observed data. As seen in the demonstration phase, the 

red block activates the machine five out of six times and so the likelihood of 

seeing the toy light if the block really is red is simply 5/6. So to make the choice 

to stay, we can imagine a coin with 5/6 probability of landing on stay and 1/6 

probability landing shift. That is, although the evidence is consistent with the red 

block hypothesis, there is still a (small) chance that the coin will come up shift, 

and the learner will return to the updated posterior (which includes all the 

evidence observed so far) to sample their next guess. Each time the learner 

observes a new piece of data, she makes the choice whether to stay or shift, in 

this way, based only on the most recent data she has observed.   
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 When applying this WSLS algorithm, an individual learner may look like 

she is randomly veering from one hypothesis to the next, sometimes abandoning 

a likely hypothesis or sampling an unlikely one, sometimes being too strongly 

influenced by a piece of data and sometimes ignoring data that is unlikely under 

her current hypothesis. However, looking across a population of learners reveals 

a surprising property of this algorithm: Aggregating all the hypotheses selected 

by all of the learners returns the Bayesian predicted posterior distribution (or at 

least a sample-based approximation thereof). Thus the WSLS algorithm provides 

a more efficient way to do Bayesian inference. The learner can maintain just a 

single hypothesis in her working memory and need only re-compute and 

resample from the posterior on occasion. Nevertheless, the responding of 

participants on aggregate still acts like a sample from the posterior distribution. 

 We can contrast this WSLS algorithm with independent sampling, in which 

a learner simply samples a new hypothesis from the posterior distribution each 

time a response is required. In other words, on each trial the learner will choose 

red, blue, or green in proportion to the probability that the block is that particular 

color given the accumulated evidence. The WSLS algorithm shares with 

independent sampling the property that responses on aggregate will match the 

posterior probability, but the algorithms differ in terms of the dependencies 

between responses. Because the learner resamples a hypothesis after each new 

observation of data in the independent sampling algorithm, there is no 

dependency between an individual’s successive guesses. In contrast, the WSLS 

algorithm predicts dependencies between responses: if the data are consistent 
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with the current hypothesis, then the learner is likely to retain that hypothesis. 

This specific instantiation of WSLS is thus one of the special cases where the 

algorithm approximates the correct distribution even though there are 

dependencies between subsequent guesses. This establishes some clear 

empirical predictions: Both algorithms will produce a pattern of responses 

consistent with Bayesian inference on any given trial, but they differ in the 

predictions that they make about the relationship between responses on 

successive trials.  

 The first thing we can examine is simply whether children’s responses 

approximate the posterior distribution produced by Bayesian inference in 

aggregate; indeed children’s predictions on aggregate correlated highly with 

Bayesian posteriors (Figure 3). Next, we can examine the dependencies 

between responses for the individual learners to investigate whether WSLS or 

independent sampling provide a better fit to children’s responses. To compare 

children’s responses to the WSLS and independent sampling algorithms, we first 

calculated the “shift probabilities” under each model. Calculating shift 

probabilities for independent sampling is relatively easy: because each sample is 

independently drawn from the posterior, the shift probability is simply calculated 

from the posterior probability of each hypothesis after observing each piece of 

evidence. Shift probabilities for WSLS were calculated such that resampling is 

based only on the likelihood associated with the current observation, given the 

current hypothesis. That is, with probability equal to this likelihood, the learner 

resamples from the full posterior. We also computed the log-likelihood scores for 
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both models—the probability that we would observe the pattern of responses 

from the children given each model. Children’s responses highly correlated with 

and had higher log-likelihood scores from the Win-Stay, Lose-Shift algorithm. 

This suggests that the pattern of dependencies between children's responses are 

better captured by the win-stay, lose-shift algorithm than by an algorithm such as 

independent sampling. 

 

5.2 Markov-Chain Monte Carlo algorithms 

 The results of the WSLS experiments suggest one algorithm that learners 

might use to sample and evaluate hypotheses. In the experiments we’ve 

considered so far, the space of possible hypotheses was relatively limited. 

Children only had to consider whether a red blue or green chip or block activated 

the machine.  However, the question of how a learner searches through a space 

of hypotheses remains an important issue for cases when the space of 

hypotheses is much larger.  Constructing an intuitive theory based on observing 

the world often confronts learners with a more complex space of possibilities.  

In particular, in the examples we discussed so far, the causal categories 

the children saw (red, blue and green blocks) and the causal laws (chips activate 

the machine) were both well-defined -- they didn’t have to be learned. In other 

cases children have been shown to use probabilistic inference to uncover even 

relatively complex and abstract causal laws (e.g. the difference between a causal 

chain and a common cause structure, Schulz, Gopnik, & Glymour, 2007, or 

between a disjunctive or conjunctive causal principle, Lucas et al., 2010).  Schulz 
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et al. (2008) and Seiver, Gopnik, and Goodman (in press) also showed that 

children can uncover new causal categories and concepts. In more realistic 

cases of theory change, learners, however, might face the “chicken-and-egg” 

problem: the laws can only be expressed in terms of the theory’s core concepts, 

but these concepts are only meaningful in terms of the role they play in the 

theory’s laws. How is a learner to discover the appropriate concepts and laws 

simultaneously, knowing neither to begin with? How could a learner search 

through this potentially infinite space of possibilities? 

 Recent, ongoing work by Bonawitz, Ullman, Gopnik, and Tenenbaum, has 

the goal of studying empirically how children's beliefs evolve through such a 

process of theory discovery, and understanding computationally how learners 

can converge quickly on a novel but veridical system of concepts and causal 

laws. Goodman et al. (2008) and Ullman et al. (2010) describe a sampling 

method using a grammar-based Metropolis-Hastings MCMC algorithm. The 

grammar generates the prior probabilities for the theories and the MCMC 

algorithm can be used to evaluate these theories given evidence.  Specifically, 

the grammar is a broad language for defining theories, which is able to build a 

potentially infinite space of possibilities (see also Ullman, Goodman, & 

Tenenbaum 2010). This grammar produces the space of possible hypotheses, 

and even provides a measure of the probability of each hypothesis: this prior 

probability of each hypothesis is the probability that each hypothesis is generated 

by the grammar. The algorithm begins with a specific theory, t, and then uses the 

grammar to propose random changes to the currently held theory. This new 
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proposed theory is probabilistically accepted or rejected, depending on how well 

it explains the data compared to the current theory, as well as how much simpler 

or more complex it is.  

Ullman et al. (2010) suggested that this method can explain how human learners, 

including young children, can rationally approximate an ideal Bayesian analysis. 

This method allows a practical learner to search over a potentially infinite space 

of theories, holding on to one theory at a time and discarding it probabilistically 

as new, potentially better alternatives are considered. 

 Bonawitz and colleagues have begun to explore how well this MCMC 

approach captures children’s inferences about magnetic objects. Magnetism 

provides an interesting domain in which to conduct this investigation, because 

the space of possible kinds of causal interactions, the number of possible groups 

of objects, and the specific sorting of objects into those groups is very large.  In 

particular, we can consider the search problem at multiple stages. First, given no 

evidence, we can consider which theories are a priori most likely. Second, given 

informative but still ambiguous data we can see how the probability of various 

theories will change. Third, given disambiguating data we can see if the system 

converges on the correct answer.  

 

Observing unlabeled but potentially magnetic objects, like unlabeled blocks, 

interacting with two labeled instances of objects from causally meaningful 

categories (ie. blocks that are labeled with  North and South polarities) provides a 

particularly interesting test. No matter how many observations are provided 
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between the unlabeled and labeled blocks, ambiguity remains: an ideal learner 

would not be able to infer whether the actual law is that like attracts like and 

opposites repel or whether the law is that likes repel and opposites attract. 

Bonawitz, Ullman, Gopnik, and Tenenbaum implemented a grammar-based 

Metropolis Hastings algorithm of magnetism discovery following this ambiguous 

evidence. Their model discovered these two possible alternative theories and 

these two theories scored highest in the search. Given that both of these theories 

were consistent with the observed data and were intuitively simple, this shows 

that stochastic search is an algorithm that can indeed be used to find reasonable 

theories.  After providing disambiguating evidence, the model was also able to 

pick out the single, most likely theory.  

These modeling results and those of Ullman, Goodman, and Tenenbaum 

(2010), which inspired this investigation, demonstrate that in practice, the MCMC 

algorithm can use relatively minimal data to effectively search through an infinite 

space of possibilities, discovering likely candidate theories and sorting of objects 

into classes.  

 Bonawitz, Ullman, Gopnik, and Tenenbaum are also empirically examining 

children’s reasoning about magnets, to see whether children search through and 

evaluate hypotheses in a way consistent with the model predictions. In their 

ongoing studies, children are asked about their beliefs at different phases of the 

experiment: before they observe any evidence, after they observe some 

ambiguous (but still informative) evidence, and after they observe disambiguating 

evidence.  They have found that prior to observing the evidence, children 
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entertain a broad space of possible causal theories about the possible groupings 

and interactions between the magnets. These hypotheses reflect the prior 

probabilities over theories generated by the grammar. Following the ambiguous 

evidence, children rationally respond by favoring the two “best” theories (that 

likes attract and opposites repel, and that likes repel and opposites attract), as 

predicted by the results of the search algorithm. When the children see a single, 

disambiguating intervention (e.g. when two objects sorted into the same group 

interact and either attract or repel), they converge on the correct theory—even 

when this means abandoning the theory they just held.  

 Strikingly, neither the initially ambiguous evidence, nor the single 

disambiguating trial are sufficient to infer the correct theory. Nevertheless, 

children are able to make an inductive leap during the experiment. They 

simultaneously integrate the partially informative (but still ambiguous) evidence 

given by the initial observed interactions with the final disambiguating trial 

between two unlabeled blocks.  Thus, even in the course of a short experiment, 

preschool-aged children are able to solve a simple version of the chicken-and-

egg problem in a basically rational way. They search through a space of possible 

hypotheses and integrate multiple pieces of evidence across different phases of 

the experiment.  

 Markov chain Monte Carlo algorithms provide an account of how a learner 

could move through a potentially infinite space of possible hypotheses, and still 

produce behavior consistent with exact Bayesian inference. There are several 

directions in which this line of research can be extended.  One important step is 
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to understand and characterize the “building blocks” for intuitive theories.  

Following from this, it will be interesting to investigate how it might be 

computationally plausible for a system to learn to use simple algorithms to 

construct complex theories from these building blocks (Kemp, Goodman, & 

Tenenbaum, 2010).  A second extension is to apply these models to “common 

sense” domains such as physics, psychology, and biology, and to the “real world” 

theories that children actually learn.  Developmental learning mechanisms for this 

kind of abstract knowledge are currently poorly understood  

 

6 Discussion  

 We began this chapter with two problems for the idea that probabilistic 

models can capture how children learn intuitive theories – the algorithm problem 

and the variability problem. We’ve suggested that the Sampling Hypothesis may 

provide an answer to both these problems. In the first experiment we showed 

that children’s causal inferences have some of the key signatures of sampling – 

particularly a pattern of probability matching that goes beyond naïve frequency 

matching. 

 We then introduced specific sampling algorithms that approximate 

Bayesian inference. First we found that preschoolers’ responses on a causal 

learning task were better captured by a Win-Stay, Lose-Shift algorithm than by 

independent sampling. An attractive property of the Win-Stay, Lose-Shift 

algorithm is that it does not require the learner to compute and resample from the 

full posterior distribution after each observation. These results suggest that even 
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responses that sometimes appear non-optimal may in fact represent an 

approximation to a rational process, and provide an account of how Bayesian 

inference could be approximated by learners with limited cognitive capacity. 

 We also presented an account of how a learner might search through a 

potentially infinite hypothesis space, inspired by computational models which 

include Markov Chain Monte Carlo searches over logical grammars (Ullman, 

Goodman, & Tenenbaum, 2010). These searches include randomly proposed 

changes to a currently held theory, which are probabilistically accepted, 

dependent on the degree to which the new theory better accounts for the data. 

These same search and inference capacities may help to drive theory change in 

the normal course of children's cognitive development. At the least, Bonawitz et 

al.’s current experiments suggest that preschool-aged children are able to 

discover a correct theory from a space of many possible theories. Children 

search through a large space of possible hypotheses and are able to integrate 

multiple pieces of evidence across different phases of the experiment to evaluate 

the best theory.  

 

6.1 Open Questions 

 We have suggested that a learner could search through a hypothesis 

space in a number of ways, dependent perhaps on the task demands, 

developmental change, or even individual preference. Which algorithm a learner 

uses may also depend on the efficiency of the algorithm. However, how we 

define efficiency may depend on how difficult it is to compute posterior 
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probabilities, and then how difficult it is to generate one or a few samples from 

the posterior. Efficiency may require considering how many samples must be 

observed before the correct posterior is approximated and the cost of each 

observation.  Thus, which algorithms are most efficient may depend on the 

nature of the problem being solved and on the capacities of the learner.  So, we 

don’t have good answers to when specific algorithms may be favored over others 

and in which contexts, but it’s an important line for future research. 

    We can also ask whether sampling behavior is rational.  A casual answer 

is “yes”—because we show how a “rational” or “computational” level analysis can 

be approximated at the algorithmic level.  However, again assessing rationality 

depends on the goals of the learner. In some circumstances, a learner may want 

to quickly converge on the most likely answer. In other circumstances, however, 

the learner may want to explore more of the possibilities. These “exploit” or 

“explore” strategies might lead a learner to use different kinds of algorithms. 

Sampling and searching through a space of hypotheses may be a particularly 

useful learning mechanism for exploratory learning. It allows a learner the 

possibility of discovering an unlikely hypothesis that may prove correct later (after 

observing additional data). Were a learner to simply maximize, always choosing 

the most likely hypothesis, he might miss out on such a discovery.  

 One of the most promising implications of examining learning at the 

algorithmic level is that other aspects of development (e.g. memory limitations, 

changes in inhibition, changes in executive function) can be connected more 

explicitly to rational models of inference. For example, a particle filter 
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approximates the probability distribution over hypotheses at each point in time 

with a set of samples (or ``particles''), and provides a scheme for updating this 

set to reflect the information provided by new evidence. The behavior of the 

algorithm depends on the number of particles. With a very large number of 

particles, each particle is similar to a sample from the posterior. With a small 

number of particles, there can be strong sequential dependencies in the 

representation of the posterior distribution. Developmental changes in cognitive 

capacity might correspond to changes in the number of particles, with 

consequences that are empirically testable. 

 Finally, we suggested that moving forward also involves connecting the 

algorithms that children might be using to carry out learning with ways in which 

the algorithms could be implemented in the brain. Ma et al (2006) suggest that 

cortical circuits may carry out sample-based approximations, reflecting the 

variability in the environment.  Probabilistic sampling algorithms can also capture 

ways in which inputs should be combined (e.g. across time, sensory modalities, 

etc) taking the reliability of the input into account, and recent research on neural 

variability demonstrates this in the brain (Fetsch, Pouget, DeAngelis, & Angelaki, 

in press; Beck, et al., 2008).  Other work may examine the implication of how 

growing dense connections between brain regions connect to particular 

algorithms and how those algorithms are affected as regions are pruned (as in 

later adolescence.) 

 

7 Conclusions 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 In the course of development, children change their beliefs, moving from a 

less to more accurate picture of the world. How do they do this given the vast 

space of possible beliefs? And how can we reconcile children’s cognitive 

progress with the apparent irrationality of many of their explanations and 

predictions? The solution we have proposed is that children may form their 

beliefs by randomly sampling from a probability distribution. This Sampling 

Hypothesis suggests a way of efficiently searching a space of possibilities in a 

way that is consistent with probabilistic inference, and it leads to predictions 

about cognitive development. The studies presented here suggest that 

preschoolers are approximating a rational solution to the problem of probabilistic 

inference via a process that can be analyzed as sampling, and that the samples 

that children generate are affected by evidence. By thinking about the 

computational problems that children face and the algorithms they might use to 

solve those problems, we can approach the variability of children’s responses in 

a new way. Children may not just be effective learners despite the variability and 

randomness of their behavior. That variability, instead, may itself contribute to 

children’s extraordinary learning abilities. 
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Figure 1: Stimuli and procedure used for testing the Sampling Hypothesis in 

children. 
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Figure 2: Results of Children’s predictions in Experiment 2 and the 80:20 first 

predictions from Experiment 1, as compared to predictions of the Noisy Max and 

the Probability Matching models. 
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Figure 3: Method for WSLS and Bayesian posterior probability and children’s 
data from WSLS experiment for each block, red (R), green (B), and blue (B) after 
observing each new instance of evidence, using parameters estimated from 
fitting the Bayesian model to the data.  

 

 
 
 
 


